Skip to main content
Log in

Modeling of the ambient radiation dose level by using passive moss biomonitoring in Macedonia

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In 2010, the ambient radiation dose level has been measured in situ for the first time at the same sampling sites where the moss samples have been collected in order to determine and describe the air pollution in the Republic of Macedonia. It has been found that the ambient dose levels are in the interval from 53 nSv/h to 340 nSv/h. A model for the calculation of radiation dose rate based on measured value and the content of U and Th (elements that have only radioactive isotopes), as well as Ba, K, La, Rb and Sr (elements that have both radioactive and stable isotopes) in moss samples, and the measured values of the radiation dose rate is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hutchison SG, Hutchison FI (1997) Radioactivity in everyday life. J Chem Educ 74:501–505. https://doi.org/10.1021/ed074p501

    Article  CAS  Google Scholar 

  2. Klement AW, Brodsky A (eds) (1982) Handbook of environmental radiation, CRC series in radiation measurement and protection, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  3. UNSCEAR (1993). Sources and effects of ionizing radiation. Report to the General Assembly with Scientific Annexes. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York

  4. Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM (2014) Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 2:260–289. https://doi.org/10.1089/ars.2013.5489

    Article  CAS  Google Scholar 

  5. Sert E, Uğur A, Özden B, Saç MM, Camgöz B (2011) Biomonitoring of 210Po and 210Pb using lichens and mosses around coal-fired power plants, Turkey. J Environ Radioact 102:535–542. https://doi.org/10.1007/s10967-015-4169-3

    Article  CAS  PubMed  Google Scholar 

  6. Boryło A, Romańczyk G, Skwarzec B (2017) Lichens and mosses as polonium and uranium biomonitors on Sobieszewo Island. J Radioanal Nucl Chem 311:859–869. https://doi.org/10.1007/s10967-016-5079-8

    Article  CAS  PubMed  Google Scholar 

  7. Barci-Funel G, Dalmasso J, Ardisson G (1992) Deposition of long-lived radionuclides after the Chernobyl accident in the forestal massif of boreon. J Radioanal Nucl Chem Lett 164:157–169. https://doi.org/10.1007/BF02163768

    Article  CAS  Google Scholar 

  8. Steinnes E, Njåstad O (1993) Use of mosses and lichens for regional mapping of 137Cs fallout from the Chernobyl accident. J Environ Radioact 21:65–73. https://doi.org/10.1016/0265-931X(93)90026-4

    Article  CAS  Google Scholar 

  9. Topcuoglu S, Güven KC, Bulut AM, Saver E (1993) Chernobyl derived radio-cesium in mosses in the Black Sea area. J Radioanal Nucl Chem 175:9–15. https://doi.org/10.1007/BF02168362

    Article  CAS  Google Scholar 

  10. Nifontova MG (1996) Mushrooms, lichens and mosses as biological indicators of radioactive environmental contamination. In Frissel JM, Luykx FF (eds) Radioecology and the Restoration of Radioactive Contaminated Sites, NATO Science Partnership Subseries: 2, pp 155–162

  11. Aleksiayenak YV, Frontasyeva MV, Florek M, Sykora I, Holy K, Masarik J, Brestakova L, Jeskovsky M, Steinnes E, Faanhof A, Ramatlhape KI (2013) Distributions of 137Cs and 210Pb in moss collected from Belarus and Slovakia. J Environ Radioact 117:19–24. https://doi.org/10.1016/j.jenvrad.2012.01.018

    Article  CAS  PubMed  Google Scholar 

  12. Popović D, Todorović D, Frontasyeva M, Ajtić J, Tasić M, Rajšić S (2008) Radionuclides and heavy metals in Borovac. Southern Serbia Environ Sci Pollut Res 15:509–520. https://doi.org/10.1007/s11356-008-0003-6

    Article  CAS  Google Scholar 

  13. Čučulović A, Čučulović R, Cvetić Antić T, Veselinović D (2011) Mosses as biomonitors for radioactivity following the Chernobyl accident. Arch Biol Sci Belgrade 63:1117–1125

    Article  Google Scholar 

  14. Sawidis T, Tsikritzis L, Tsigaridas K (2009) Cesium-137 monitoring using mosses from W. Macedonia, N. Greece. J Environ Manag 90:2620–2627. https://doi.org/10.1016/j.jenvman.2009.02.010

    Article  CAS  Google Scholar 

  15. Dimovska S, Stafilov T, Šajn R, Frontasyeva MV (2010) Distribution of some natural and man-made radionuclides in soil from the city of Veles (Republic of Macedonia) and its environs. Radiat Prot Dosim 138:144–157. https://doi.org/10.1093/rpd/ncp238

    Article  CAS  Google Scholar 

  16. Dimovska S, Stafilov T, Šajn R (2012) Radioactivity in soil from the city of Kavadarci (Republic of Macedonia) and its environs. Radiat Prot Dosim 148:107–120. https://doi.org/10.1093/rpd/ncq601

    Article  CAS  Google Scholar 

  17. Stojanovska Z, Boev B, Ristova M, Boev I, Ajka S, Žunić ZS, Ivanova K (2019) Risk assessment resulting from radionuclides in soils of the Republic of Macedonia. Contribut Sect Nat Math Biotech Sci MASA 40:161–168. https://doi.org/10.20903/csnmbs.masa.2019.40.2.140

    Article  CAS  Google Scholar 

  18. Lazarevski A (1993) Climate in Macedonia. Kultura, Skopje, Macedonia. (in Macedonian)

  19. Stafilov T, Šajn R (2016) Geochemical Atlas of the Republic of Macedonia. Faculty of Natural Sciences and Mathematics, Skopje

  20. Stafilov T, Šajn R (2019) Spatial distribution and pollution assessment of heavy metals in soil from the Republic of North Macedonia. J Environ Sci Health A 54:1457–1474. https://doi.org/10.1080/10934529.2019.1656498

    Article  CAS  Google Scholar 

  21. Petrušev E, Stolić N, Šajn R, Stafilov T (2021) Geological characteristics of the Republic of North Macedonia, Geol Maced 35:49–58. https://doi.org/10.46763/GEOL21351372049ep

  22. Arsovski M (1997) Tectonics of Macedonia. Faculty of Mining and Geology, Štip (in Macedonian)

  23. Karagjuleva J, Kostandinov V, Zogarcev I (1974) Tectonic characteristic of the Kraistides. In: Mahel M (ed.), Tectonics of the Carphatian Balkan Regions. Geological Institute of Dionyz Štur, Bratislava, pp 332–340

  24. ICP Vegetation (2001) ICP Vegetation Experimental Protocol for the 2001 Season. ICP Vegetation Coordination Centre, Bangor, UK

  25. Harmens, H. (Ed.) (2005) Heavy Metals in European Mosses: 2005/2006 Survey—Monitoring Manual. International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, Centre for Ecology and Hydrology, Bangor, UK

  26. Harmens, H. (Ed.) (2010) Heavy Metals in European Mosses: 2010 Survey—Monitoring Manual. International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, Centre for Ecology and Hydrology, Bangor, UK

  27. Barandovski L, Cekova M, Frontasyeva MV, Pavlov SS, Stafilov T, Steinnes E, Urumov V (2008) Atmospheric deposition of trace element pollutants in Macedonia studied by the moss biomonitoring technique. Environ Monit Assess 138:107–118. https://doi.org/10.1007/s10661-007-9747-6

    Article  CAS  PubMed  Google Scholar 

  28. Barandovski L, Frontasyeva MV, Stafilov T, Šajn R, Pavlov S, Enimiteva V (2012) Trends of atmospheric deposition of trace elements in Macedonia by the moss biomonitoring technique. J Environ Sci Health A 47:2000–2015. https://doi.org/10.1080/10934529.2012.695267

    Article  CAS  Google Scholar 

  29. Barandovski L, Stafilov T, Šajn R, Frontasyeva MV, Bačeva K (2013) Air pollution study in Macedonia by using moss biomonitoring technique. ICP-AES and AAS, Maced J Chem Chem Eng 32:89–107

    Article  CAS  Google Scholar 

  30. Barandovski L, Frontasyeva MV, Stafilov T, Šajn R, Ostrovnaya TM (2015) Multi-element atmospheric deposition of trace elements in Macedonia studied by the moss biomonitoring technique. Environ Sci Pollut Res 22:16077–16097. https://doi.org/10.1007/s11356-015-4787-x

    Article  CAS  Google Scholar 

  31. Stafilov T, Šajn R, Barandovski L, Bačeva Andonovska K, Malinovska S (2018) Moss biomonitoring of atmospheric deposition study of minor and trace elements in Macedonia. Air Qual Atmos Health 11:137–152. https://doi.org/10.1007/s11869-017-0529-1

    Article  CAS  Google Scholar 

  32. Barandovski L, Stafilov T, Šajn R, Frontasyeva M, Bačeva Andonovska K (2020) Atmospheric heavy metal deposition in North Macedonia from 2002 to 2010 studied by the moss biomonitoring technique. Atmosphere 11:929. https://doi.org/10.3390/atmos11090929

    Article  CAS  Google Scholar 

  33. UNSCEAR (1996) Sources and effects of ionizing radiation. Report to the General assembly with scientific annexes. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York

  34. Dimovska B, Šajn R, Stafilov T, Bačeva K, Tănăselia C (2014) Determination of atmospheric pollution around the thermoelectric power plant using a moss biomonitoring. Air Qual Atmos Health 7:541–557. https://doi.org/10.1007/s11869-014-0257-8

    Article  CAS  Google Scholar 

  35. Stafilov T, Šajn R, Arapčeska M, Kungulovski I, Alijagić J (2018) Geochemical properties of topsoil around the open coal mine and Bitola thermoelectric plant, Republic of Macedonia. Chapter 1, In: Soil Contamination: Sources, Assessment and Remediation, Lund JE (Ed.), Nova Science Publishers Inc., New York

  36. Stafilov T, Šajn R, Arapčeska M, Kungulovski I, Alijagić J (2018) Geochemical properties of topsoil around the coal mine and thermoelectric power plant. J Environ Sci Health A 53:793–808. https://doi.org/10.1080/10934529.2018.1445076

    Article  CAS  Google Scholar 

  37. Stafilov T, Šajn R, Arapčeska M, Kungulovski I (2021) Moss biomonitoring of air pollution around the coal mine and Bitola thermoelectric power plant, North Macedonia, Chapter 3. In: Balabanova B, Stafilov T (eds) Contaminant levels and ecological effects—understanding and predicting with chemometric methods Springer, Cham. https://doi.org/10.1007/978-3-030-66135-9_3

  38. Stuhlberger C (2009) Mining and environment in the Western Balkans, UNEP, Geneva, p 108 (http://www.unep.org/pdf/MiningBalkans_screen.pdf)

  39. Thompson IMG, Bøtter-Jensen L, Deme S, Pernicka F, Sáez-Vergara JC (1999) Technical recommendation on measurements of external environmental gamma radiation doses. A Report of EURADOS Working Group 12 "Environmental Radiation Monitoring", European Commission, Luxemburg

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lambe Barandovski or Trajče Stafilov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barandovski, L., Šajn, R., Bačeva Andonovska, K. et al. Modeling of the ambient radiation dose level by using passive moss biomonitoring in Macedonia. J Radioanal Nucl Chem 330, 267–278 (2021). https://doi.org/10.1007/s10967-021-07943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07943-1

Keywords

Navigation