Skip to main content
Log in

Desorption behavior of U(VI) from kaolinite and hematite by Shewanella putrefaciens cells and extracellular polymeric substances

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The desorption of U(VI) from minerals by microorganisms and their extracellular polymeric substances (EPS) was characterized with Shewanella putrefaciens (S. putrefaciens) as a typical bacterial strain, while kaolinite and α-Fe2O3 as typical minerals. Based on the results, EPS contributed significantly to U(VI) desorption from minerals. Two kinds of mechanisms should be mainly involved in U(VI) desorption, including the competition for the adsorption sites of minerals between U(VI) and bacterial cells or EPS, and the formation of stable U(VI)–bacterial cells or U(VI)–EPS complexes. Desorption kinetics indicated that the desorption process of U(VI) on minerals was a complex heterogeneous diffusion and chemical desorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Del Nero M, Salah S, Miura T, Clement A, Gauthier-Lafaye F (1999) Sorption/desorption processes of uranium in clayey samples of the Bangombe natural reactor zone, Gabon. Radiochim Acta 87:135–150

    Article  Google Scholar 

  2. Baston GMN, Berry JA, Brownsword M, Cowper MM, Heath T, Tweed CJ (2011) The sorption of uranium and technetium on bentonite, tuff and granodiorite. MRS Proc. https://doi.org/10.1557/PROC-353-989

    Article  Google Scholar 

  3. Yusan SD, Erenturk SA (2011) Sorption behaviors of uranium(VI) ions on α-FeOOH. Desalination 269:58–66

    Article  CAS  Google Scholar 

  4. Hui J, Wang Y, Liu Y, Cao X, Zhang Z, Dai Y, Liu Y (2019) Effects of pH, carbonate, calcium ion and humic acid concentrations, temperature, and uranium concentration on the adsorption of uranium on the CTAB-modified montmorillonite. J Radioanal Nucl Chem 319:1251–1259

    Article  CAS  Google Scholar 

  5. Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  6. Huang F-Y, Zhang H-L, Wang Y-P, Yi F-C, Feng S, Huang H-X, Cheng M-X, Cheng J, Yuan W-J, Zhang J (2020) Uranium speciation and distribution in Shewanella putrefaciens and anaerobic granular sludge in the uranium immobilization process. J Radioanal Nucl Chem 326:393–405

    Article  CAS  Google Scholar 

  7. Huang JH, Elzinga EJ, Brechbuehl Y, Voegelin A, Kretzschmar R (2011) Impacts of Shewanella putrefaciens Strain CN-32 Cells and Extracellular Polymeric Substances on the Sorption of As(V) and As(lll) on Fe(lll)-(Hydr)oxides. Environ Sci Technol 45:2804–2810

    Article  CAS  Google Scholar 

  8. Templeton AS, Trainor TP, Traina SJ, Spormann AM, Brown GE (2001) Pb(II) distributions at biofilm-metal oxide interfaces. Proc Natl Acad Sci USA 98:11897–11902

    Article  CAS  Google Scholar 

  9. Ohnuki T, Yoshida T, Ozaki T, Samadfam M, Kozai N, Yubuta K, Mitsugashira T, Kasama T, Francis AJ (2005) Interactions of uranium with bacteria and kaolinite clay. Chem Geol 220:237–243

    Article  CAS  Google Scholar 

  10. Lee SY, Baik MB, Roh Y, Oh JM (2010) The effects of Fe-bearing minerals on the interaction between underground dissimilatory metal-reducing bacteria and dissolved uranium. J Geol Soc Korea 46:357–366

    CAS  Google Scholar 

  11. Merroun ML, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295

    Article  CAS  Google Scholar 

  12. Omoike A, Chorover J (2004) Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and adsorption effects. Biomacromol 5:1219–1230

    Article  CAS  Google Scholar 

  13. Cao B, Ahmed B, Kennedy DW, Wang Z, Shi L, Marshall MJ, Fredrickson JK, Isern NG, Majors PD, Beyenal H (2011) Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization. Environ Sci Technol 45:5483–5490

    Article  CAS  Google Scholar 

  14. Zhang H, Cheng M, Liu W, Huang F, Ding H, Li S, Guo W, Wang Y, Huang H (2017) Characterization of uranium in the extracellular polymeric substances of anaerobic granular sludge used to treat uranium-contaminated groundwater. RSC Adv 7:54188–54195

    Article  CAS  Google Scholar 

  15. Zhang H, Cheng M, Li S, Huang H, Liu W, Lv X, Chu J, Ding H, Zhao D, Wang Y, Huang F (2019) Roles of extracellular polymeric substances in uranium immobilization by anaerobic sludge. AMB Express 9:199

    Article  CAS  Google Scholar 

  16. Liu Y, Yang C-H, Li J (2007) Influence of extracellular polymeric substances on Pseudomonas aeruginosa transport and deposition profiles in porous media. Environ Sci Technol 41:198–205

    Article  CAS  Google Scholar 

  17. Parikh SJ, Colloids J (2008) ATR-FTIR study of lipopolysaccharides at mineral surfaces. Colloids Surf B 62:188–198

    Article  CAS  Google Scholar 

  18. Sheng GP, Xu J, Luo HW, Li WW, Li WH, Yu HQ, Xie Z, Wei SQ, Hu FC (2013) Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge. Water Res 47:607–614

    Article  CAS  Google Scholar 

  19. Walker S, Flemming C, Ferris F, Beveridge T, Bailey G (1989) Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Appl Environ Microb 55:2976–2984

    Article  CAS  Google Scholar 

  20. Tsezos M (1985) The selective extraction of metals from solution by micro-organisms a brief overview. Can Metall Q 24:141–144

    Article  CAS  Google Scholar 

  21. Hong Z, Chen W, Rong X, Cai P, Dai K, Huang Q (2013) The effect of extracellular polymeric substances on the adhesion of bacteria to clay minerals and goethite. Chem Geol 360–361:118–125

    Article  Google Scholar 

  22. Coutelot F, Seaman JC (2018) Uranium(VI) adsorption and surface complexation modeling onto vadose sediments from the Savannah River Site. Environ Earth Sci 77:148

    Article  Google Scholar 

  23. Hrenovic J, Ivankovic T, Tibljas D (2009) The effect of mineral carrier composition on phosphate-accumulating bacteria immobilization. J Hazard Mater 166:1377–1382

    Article  CAS  Google Scholar 

  24. Elzinga EJ, Huang JH, Chorover J, Kretzschmar R (2012) ATR-FTIR spectroscopy study of the adhesion of Shewanella putrefaciens bacterial cells to the surface of hematite. Environ Sci Technol 46:12848–12855

    Article  CAS  Google Scholar 

  25. Kwon KD, Vadillo-Rodriguez V, Logan BE, Kubicki JD (2006) Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies. Geochim Cosmochim Acta 70:3803–3819

    Article  CAS  Google Scholar 

  26. Mei H, Meng Y, Gong Y, Chen X, Chen C (2016) Effect of silicate on the sorption properties of kaolinite: removal of U(VI) and mechanism. J Radioanal Nucl Chem 311:1–9

    Google Scholar 

  27. Xie S, Zhan C, Zhou X, Yang J, Zhang X, Wang J (2009) Removal of uranium (VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100:162–166

    Article  CAS  Google Scholar 

  28. Strawn DG, Scheidegger AM, Sparks D (1998) Kinetics and mechanisms of Pb(II) sorption and desorption at the aluminum oxidewater interface. Environ Sci Technol 32:2596–2601

    Article  CAS  Google Scholar 

  29. Periasamy K, Namasivayam C (1994) Process development for removal and recovery of cadmium from wastewater by a low-cost adsorbent: adsorption rates and equilibrium studies. Ind Eng Chem Res 33:317–320

    Article  CAS  Google Scholar 

  30. Ho YS, Mckay G (2010) The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can J Chem Eng 76(4):822–827

    Article  Google Scholar 

  31. Mclintock IS (1967) The Elovich equation in chemisorption kinetics. Nature 216:1204–1205

    Article  CAS  Google Scholar 

  32. Motaghian HR, Hosseinpur AR (2013) Zinc desorption kinetics in wheat (Triticum Aestivum L.) rhizosphere in some sewage sludge amended soils. J Soil Sci Plant Nutr 13:664–678

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (21571163, 21407133, 41402248 and 51608498), the sponsored research (TP03201601) from China Academy of Engineering Physics, National Key R&D Program of China (2019YFC1803500, 2019YFC1803504), the key research and development projects of Sichuan science and technology department (No: 2018SZ0298), the Scientific research project of Sichuan education department (No:16ZB0150), Nuclear Facility Decommissioning and radioactive waste treatment research project of the State Administration of science, technology and industry of national defense(NO.1521 [2018] of the second division of science and Technology), the Longshan academic research talent support program of Southwest University of Science and Technology (Nos. 18LZX309, 17LZX613, 18LZX638 and 18LZXT03), Southwest University of Science and Technology Natural Science Foundation (NO.18zx7125).

Author information

Authors and Affiliations

Authors

Contributions

ZW, Y-PW and H-XH designed experiments, and F-YH and H-LZ directly conducted experiments and wrote the manuscript. SF and H-HD performed experiments. M-XC, W-DL and F-CY helped with the experimentation. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhe Wang, Yong-Peng Wang or He-Xiang Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors gave their consent for publication.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, FY., Zhang, HL., Feng, S. et al. Desorption behavior of U(VI) from kaolinite and hematite by Shewanella putrefaciens cells and extracellular polymeric substances. J Radioanal Nucl Chem 329, 1555–1569 (2021). https://doi.org/10.1007/s10967-021-07919-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07919-1

Keywords

Navigation