Skip to main content
Log in

Covalent organic polymers are highly effective absorbers of iodine in water under ultra-high pressure

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radioactive iodine in nuclear waste is increasingly polluting the environment, and the careful handling of radioactive iodine is crucial to the sustainable development of nuclear energy. In this paper, a imine-based Covalent organic polymer (COP) is prepared by aldimine condensation. The COP material is stable under 500 MPa ultra-high pressure with an average particle size of 100 μm. The adsorption process is in line with the Langmuir isotherm adsorption model control, and the maximum adsorption capacity is 3082.14 mg/g. The adsorption is a spontaneous endothermic process of increased entropy and raising the temperature is conducive to the adsorption process. The electron donor and iodine electron acceptor in the ligand form an electron transfer compound to achieve iodine adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang X, da Silva I, Godfrey HGW, Callear SK, Sapchenko SA, Cheng Y, Vitórica-Yrezábal I, Frogley MD, Cinque G, Tang CC, Giacobbe C, Dejoie C, Rudić S, Ramirez-Cuesta AJ, Denecke MA, Yang S, Schröder M (2017) Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal-Organic Frameworks. J Am Chem Soc 139:16289–16296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Han T-T, Wang L-N, Potgieter JH (2020) ZIF-11 derived nanoporous carbons with ultrahigh uptakes for capture and reversible storage of volatile iodin. J Solid State Chem 282:121108

    Article  CAS  Google Scholar 

  3. Jong-Ho P, Ralph TY (2005) Predicting adsorption isotherms of low-volatile compounds by temperature programmed desorption: iodine on carbon. Langmuir 21:5055–5060

    Article  CAS  Google Scholar 

  4. Ruidan M, Fengyuan W, Junyu L, Huadong G, Ting Z, Shuang L, Zhiyong G, Xianmin G (2020) An amino-decorated porous metal-organic framework for efficient C2 hydrocarbon/CH4 separation and high iodine adsorption. Microporous Mesoporous Mater 305:110306

    Article  CAS  Google Scholar 

  5. Hui L, Xuesong D, Bao-Hang H (2016) porous azo-bridged porphyrin–phthalocyanine network with high iodine capture capability. Chem-Eur J 22:1–7

    CAS  Google Scholar 

  6. Cheng PY, Zhong D, Zewail AH (1995) Microscopic solvation and femtochemistry of charge-transfer reactions: the problem of benzene(s)-iodine binary complexes and their solvent structures. Chem Phys Lett 242:369–379

    Article  CAS  Google Scholar 

  7. Al-Hashimi NA (2004) Spectroscopic studies of the reaction of iodine with 2,3-diaminopyridine. Spectrochim Acta A 60:2181–2184

    Article  CAS  Google Scholar 

  8. Al-Hashimi NA, Hassan KA, Nour E-M (2005) Electronic, infrared, and Raman spectral studies of the reaction of iodine with 4-aminopyridine. Spectrochim Acta A 62:317–321

    Article  CAS  Google Scholar 

  9. Miyazaki T, Katayama S, Funai E, Tsuji Y, Sakurai S (2005) Role of adsorbed iodine into poly (vinyl alcohol) films drawn in KI/I2 solution. Polym J 46:7436–7442

    Article  CAS  Google Scholar 

  10. Shuai Y, Liang F, Kecheng W, Jiandong P, Matheiu B, Christina L, Yujia S, Junsheng Q, Xinyu Y, Peng Z, Qi W, Lanfang Z, Yingmu Z, Liangliang Z, Yu F, Jialuo L, Hong-Cai Z (2018) Stable metal–organic frameworks: design, synthesis, and applications. Adv Mater 30:1704303

    Article  CAS  Google Scholar 

  11. Kim S, Lim H, Lee J, Choi HC (2018) Synthesis of a scalable two-dimensional covalent organic framework (COF) by photon-assisted imine condensation reaction on the water surface. Langmuir 34:8731–8738

    Article  CAS  PubMed  Google Scholar 

  12. Wang L-M, Yue J-Y, Cao X-Y, Wang D (2019) Insight into the transimination process in the fabrication of surface schiff-based covalent organic frameworks. Langmuir 35:6333–6339

    Article  CAS  PubMed  Google Scholar 

  13. Elewa AM, Elsayed MH, EL-Mahdy AFM, Chang C-L, Ting L-Y, Lin W-C, Lu C-Y, Chou H-H (2021) Triptycene-based discontinuously-conjugated covalent organic polymer photocatalysts for visible-light-driven hydrogen evolution from water. Appl Catal B-Environ 285:119802

    Article  CAS  Google Scholar 

  14. Xiang Z, Mercado R, Huck JM, Wang H, Guo Z, Wang W, Cao D, Haranczyk M, Smit B (2015) Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. S J Am Chem Soc 137:13301–13307

    Article  CAS  Google Scholar 

  15. Banerjee A, Herrero S, Gutiérrez Á, Chattopadhyay S (2020) Synthesis, structure and magnetic property of a dinuclear cobalt (II/III) complex with a reduced Schiff base ligand. Polyhedron 190:114756

    Article  CAS  Google Scholar 

  16. Vadivel T, Dhamodaran M (2016) Synthesis, characterization and antibacterial studies of ruthenium (III) complexes derived from chitosan Schiff base. Int J Biol Macromo 90:44–52

    Article  CAS  Google Scholar 

  17. Jiang S-Y, Gan S-X, Zhang X, Li H, Qi Q-Y, Cui F-Z, Lu J, Zhao X (2019) Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde. J Am Chem Soc 141:14981–14986

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Shi X, Wang Y (2020) In-situ growth of cationic covalent organic frameworks (COFs) for mixed matrix membranes with enhanced performances. Langmuir 36:10970–10978

    Article  CAS  PubMed  Google Scholar 

  19. Shan H, Li S, Yang Z, Zhang X, Zhuang Y, Zhu Q, Cai D, Qin P, Baeyens J (2021) Triazine-based N-rich porous covalent organic polymer for the effective detection and removal of Hg (II) from an aqueous solution. Chem Hem J 426:130757

    CAS  Google Scholar 

  20. Skorjanc T, Shetty D, Trabolsi A (2021) Pollutant removal with organic macrocycle-based covalent organic polymers and frameworks. Chem 7(4):882–918

    Article  CAS  Google Scholar 

  21. Şenol ZM, Şimşek S, Özer A, Arslan DŞ (2020) Synthesis and characterization of chitosan–vermiculite composite beads for removal of uranyl ions: isotherm, kinetics and thermodynamics studies. J Radioanal Nucl Ch 327:159–173

    Article  CAS  Google Scholar 

  22. Şenol ZM, Gül ÜD, Şimşek S (2019) Assessment of Pb 2+ removal capacity of lichen (Evernia prunastri): application of adsorption kinetic, isotherm models, and thermodynamics. Environ Sci Pollut R 26(26):27002–27013

    Article  CAS  Google Scholar 

  23. Fan H, Mundstock A, Feldhoff A, Knebel A, Gu J, Meng H, Caro J (2018) COF–COF bilayer membranes for highly selective gas separation. J Am Chem Soc 140:1–6

    Article  CAS  Google Scholar 

  24. Maza S, Kijatkin C, Bouhidel Z, Pillet S, Schaniel D, Imlau M, Guillot B, Cherouana A, Bendeif E-E (2020) Synthesis, structural investigation and NLO properties of three 1,2,4-triazole Schiff bases. J Mol Struct 1219:128492

    Article  CAS  Google Scholar 

  25. Xu H-S, Luo Y, Li X, See PZ, Chen Z, Ma T, Liang L, Leng K, Abdelwahab I, Wang L, Li R, Shi X, Zhou Y, Lu XF, Zhao X, Liu C, Sun J, Loh KP (2020) Single crystal of a one-dimensional metallo-covalent organic framework. Nat Commun 11:1–2

    Google Scholar 

  26. Sun Y, Gao H, Xu L, Waterhouse GIN, Zhang H, Qiao X, Xu Z (2020) Ultrasensitive determination of sulfathiazole using a molecularly imprinted electrochemical sensor with CuS microflowers as an electron transfer probe and Au@COF for signal amplification. Food Chem 332:127376

    Article  CAS  PubMed  Google Scholar 

  27. Zhongping L, Xiao F, Yongcun Z, Yuwei Z, Hong X, Xiaoming L, Ying M (2014) A 2D azine-linked covalent organic framework for gas storage applications. Chem Commun (Camb) 50:13825–13828

    Article  CAS  Google Scholar 

  28. Refat MS, El-Sayed MY, Adam AMA (2013) Cu(II), Co(II) and Ni(II) complexes of new Schiff base ligand: Synthesis, thermal and spectroscopic characterizations. J Mol Struct 1038:62–72

    Article  CAS  Google Scholar 

  29. Wang Y, Chen Y, Liu C, Yu F, Chi Y (2017) The effect of magnesium oxide morphology on adsorption of U(VI) from aqueous solution. Chem Eng J 316:936–950

    Article  CAS  Google Scholar 

  30. Enol ZM (2020) Effective biosorption of allura red dye from aqueous solutions by the dried-lichen (pseudoevernia furfuracea) biomass. Int J Environ 1–15

  31. Drweesh SA, Fathy NA, Wahba MA, Hanna AA, Akarish AIM, Elzahany EAM, El-Sherif IY, Abou-El-Sherbini KS (2016) Equilibrium, kinetic and thermodynamic studies of Pb(II) adsorption from aqueous solutions on HCl-treated Egyptian kaolin. J Environ Chem Eng 4(2):1674–1684

    Article  CAS  Google Scholar 

  32. Şenol ZM, Gul UD, Gurkan R (2020) Bio-sorption of bisphenol a by the dried- and inactivated-lichen (Pseudoevernia furfuracea) biomass from aqueous solutions. J Environ Health Sci 18(2):853–864

    CAS  Google Scholar 

  33. Daneshvar E, Kousha M, Jokar M, Koutahzadeh N, Guibal E (2012) Acidic dye biosorption onto marine brown macroalgae: Isotherms, kinetic and thermodynamic studies. Chem Eng J 204–206:225–234

    Article  CAS  Google Scholar 

  34. Hameed BH, Tan IAW, Ahmad AL (2008) Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on co-conut husk-based activated carbon. Chem Eng J 144(1):235–244

    Article  CAS  Google Scholar 

  35. Li AY, Deng H, Jiang YH, Ye CH, Yu BG, Zhou XL, Ma AY (2020) Superefficient removal of heavy metals from wastewater by Mg-loaded biochars: adsorption characteristics and removal mechanisms. Langmuir 36:9160–9174

    Article  CAS  PubMed  Google Scholar 

  36. Gatabi MP, Moghaddam HM, Ghorbani M (2016) Point of zero charge of maghemite decorated multiwalled carbon nanotubes fabricated by chemical precipitation method. J Mol Liq 216:117–125

    Article  CAS  Google Scholar 

  37. Şimşek S, Şenol ZM, Ulusoy Hİ (2017) Synthesis and characterization of a composite polymeric material including chelating agent for adsorption of uranyl ions. J Hazard Mater 338:437–446

    Article  PubMed  CAS  Google Scholar 

  38. Kavak DD, Uelkue S (2015) Kinetic and equilibrium studies of adsorption of β-glucuronidase by clinoptilolite-rich minerals. Process Biochem 50:221–229

    Article  CAS  Google Scholar 

  39. Yu F, Chen Y, Wang Y, Liu C, Ma W (2018) Enhanced removal of iodide from aqueous solution by ozonation and subsequent adsorption on Ag-Ag2O modified on Carbon Spheres. Appl Surf Sci 427:753–762

    Article  CAS  Google Scholar 

  40. Li Z-J, Yue Z, Ju Y, Wu X, Ren Y, Wang S, Li Y, Zhang Z-H, Guo X, Lin J, Wang J-Q (2020) Ultrastable thorium metal–organic frameworks for efficient iodine adsorption. Inorg Chem 59:4435–4442

    Article  CAS  PubMed  Google Scholar 

  41. Tang PH, So PB, Lee KR, Lai YL, Lee CS, Lin CH (2020) Metal organic framework-polyethersulfone composite membrane for iodine capture. Polym J 12:2309–2309

    CAS  Google Scholar 

  42. Li Z-J, Ju Y, Lu H, Wu X, Yu X, Li Y, Wu X, Zhang Z-H, Lin J, Qian Y, He M-Y, Wang J-Q (2021) Boosting the iodine adsorption and radioresistance of Th-UiO-66 MOFs via aromatic substitution. Chem Eur J 4:1162–1162

    Article  CAS  Google Scholar 

  43. Ye F, Huang C, Jiang X, He W, Gao X, Ma L, Ao J, Xu L, Wang Z, Li Q, Li J, Ma H (2020) Reusable fibrous adsorbent prepared via Co-radiation induced graft polymerization for iodine adsorption. Ecotoxicol Environ Saf 203:111021

    Article  CAS  PubMed  Google Scholar 

  44. Liu R, Zhang W, Chen Y, Xu C, Hu G, Han Z (2020) Highly efficient adsorption of iodine under ultrahigh pressure from aqueous solution. Sep Purif Technol 233:115999

    Article  CAS  Google Scholar 

  45. Geng T, Chen G, Xia H, Zhang W, Zhu Z, Cheng B (2018) Poly{tris[4-(2-thienyl) phenyl] amine} and poly [tris (4-carbazoyl- 9-yl phenyl) amine] conjugated microporous polymers as absorbents for highly efficient iodine adsorption. J Solid State Chem 26:85–91

    Article  CAS  Google Scholar 

  46. Chen P, He X, Pang M, Dong X, Zhao S, Zhang W (2020) Iodine capture using zr-based metal-organic frameworks (Zr-MOFs): adsorption performance and mechanism. ACS Appl Mater Inter 12:20429–20439

    Article  CAS  Google Scholar 

  47. Li G, Huang Y, Lin J, Yu C, Liu Z, Fang Y, Xue Y, Tang C (2020) Effective capture and reversible storage of iodine using foam-like adsorbents consisting of porous boron nitride microfibers. Chem Eng J 382:122833

    Article  CAS  Google Scholar 

  48. Long X, Chen Y-S, Zheng Q, Xie X-X, Tang H, Jiang L-P, Jiang J-T, Qiu J-H (2020) Removal of iodine from aqueous solution by PVDF/ZIF-8 nanocomposite membranes. Sep Purif Technol 238:116488

    Article  CAS  Google Scholar 

  49. Li Z-J, Ju Y, Yu B, Wu X, Lu H, Li Y, Zhou J, Guo X, Zhang Z-H, Lin J, Wang J-Q, Wang S (2020) Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chem Commun (Camb) 56:6715–6718

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for the support of the National Natural Science Foundation of China (No.21667024).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conceptualization and methodology. YW: Investigation, Data Curation, Writing- Original draft preparation, Visualization. YC: Resources, Supervision, Writing-Reviewing and Editing, Project Administration. MZ: Software, Validation; LZ: Investigation.

Corresponding author

Correspondence to Yuantao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, M., Zhang, L. et al. Covalent organic polymers are highly effective absorbers of iodine in water under ultra-high pressure. J Radioanal Nucl Chem 329, 1407–1415 (2021). https://doi.org/10.1007/s10967-021-07900-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07900-y

Keywords

Navigation