Skip to main content
Log in

A continuous radon monitoring system for integration into the climate change observation network

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A radon monitoring system capable of continuous real-time monitoring of well gas radon was devised and tested in a climate change observation network. It comprised a radon detector and could help observe the groundwater in a well, blocking the inflow of outside air. The water temperature, electrical conductivity, and water level were also monitored in the groundwater well. The temperature and electrical conductivity were almost constant within a 1% error range in both the 5-day preliminary and the 7-month long-term tests. The groundwater level appeared to be related to radon concentration, and tidal forces may have influenced both radon concentration and groundwater levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. U.S. Environmental Protection Agency, (2012) A Citizen’s Guide to Radon: the Guide to Protecting Yourself and Your Family from Radon. Environmental Protection Agency, U.S

    Google Scholar 

  2. World health Organization (WHO) (2009) Handbook on indoor radon: A public health perspective. WHO, Geneva

    Google Scholar 

  3. Cicerone RD, Ebel JE, Britton J (2009) A systematic compilation of earthquake precursors. Tectonophysics 476:371–396. https://doi.org/10.1016/j.tecto.2009.06.008

    Article  Google Scholar 

  4. Igarashi G, Saeki S, Takahata N, Sumikawa K, Tasaka S, Sasaki Y, Takahashi M, Sano Y (1995) Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269:60–61. https://doi.org/10.1126/science.269.5220.60

    Article  CAS  PubMed  Google Scholar 

  5. King CY (1981) Do radon anomalies predict earthquakes? Nature 293:262–262. https://doi.org/10.1038/293262a0

    Article  Google Scholar 

  6. Kuo MCT, Fan K, Kuochen H, Chen W (2006) A mechanism for anomalous decline in radon precursory to an earthquake. Ground Water 44:642–647. https://doi.org/10.1111/j.1745-6584.2006.00219.x

    Article  CAS  PubMed  Google Scholar 

  7. Laiolo M, Cigolini C, Coppola D, Piscopo D (2012) Developments in real–time radon monitoring at Stromboli volcano. J Environ Radioact 105:21–29. https://doi.org/10.1016/j.jenvrad.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  8. Silver PG, Wakita H (1996) A search for earthquake precursors. Science 273:77. https://doi.org/10.1126/science.273.5271.77

    Article  CAS  Google Scholar 

  9. Cigolini C, Poggi P, Ripepe M, Laiolo M, Ciamberlini C, Delle Donne D, Ulivieri G, Coppola D, Lacanna G, Marchetti E, Piscopo D, Genco R (2009) Radon surveys and real–time monitoring at Stromboli volcano: Influence of soil temperature, atmospheric pressure and tidal forces on 222Rn degassing. J Volcanol Geotherm Res 184:381–388. https://doi.org/10.1016/j.jvolgeores.2009.04.019

    Article  CAS  Google Scholar 

  10. Shouchuan Z, Zheming S, Guangcai W, Rui Y, Zuochen Z (2020) Groundwater radon precursor anomalies identification by decision tree method. Appl Geochem 121:104696

    Article  Google Scholar 

  11. Corbett DR, Burnett WC, Cable PH, Clark SB (1997) Radon tracing of groundwater input into par pond, savannah river site. J Hydrol 203:209–227. https://doi.org/10.1016/S0022-1694(97)00103-0

    Article  Google Scholar 

  12. Schmidt A, Schlueter M, Melles M, Schubert M (2008) Continuous and discrete on–site detection of 222radon in ground– and surface waters by means of an extraction module. Appl Radiat Isot 66:1939–1944. https://doi.org/10.1016/j.apradiso.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  13. Santos IR, Niencheski F, Burnett WC, Peterson R, Chanton J, Andrade CFF, Milani IB, Schmidt A, Knoeller K (2008) Tracing anthropogenically driven groundwater discharge into a coastal lagoon from southern Brazil. J Hydrol 353:275–293. https://doi.org/10.1016/j.jhydrol.2008.02.010

    Article  Google Scholar 

  14. Sukanya S, Noble J, Joseph S (2021) Factors controlling the distribution of radon (222Rn) in groundwater of a tropical mountainous river basin in southwest India. Chemosphere 263:128096. https://doi.org/10.1016/j.chemosphere.2020.128096

    Article  CAS  PubMed  Google Scholar 

  15. Zmazek B (2010) Identification of radon anomalies in soil gas using decision trees and neural networks. Nukleonika 55:501–505

    CAS  Google Scholar 

  16. Reddy DV, Nagabhushanam P (2011) Groundwater electrical conductivity and soil radon gas monitoring for earthquake precursory studies in Koyna, India. Appl Geochem 26:731–737. https://doi.org/10.1016/j.apgeochem.2011.01.031

    Article  CAS  Google Scholar 

  17. Tsunomori F, Tanaka H (2014) Anomalous change of groundwater radon concentration monitored at Nakaizu well in 2011. Radiat Meas 60:35–41. https://doi.org/10.1016/j.radmeas.2013.11.006

    Article  CAS  Google Scholar 

  18. Tsunomori F, Kuo T (2010) A mechanism for radon decline prior to the IzuOshima–Kinkai Earthquake Japan. Radiat Meas 45(1978):139–142

    Article  CAS  Google Scholar 

  19. Wakita H, Nakamura Y, Notsu K, Noguchi M, Asada T (1980) Radon anomaly: A possible precursor of the 1978 Izu–Oshima–Kinkai earthquake. Science 207:882–883. https://doi.org/10.1126/science.207.4433.882

    Article  CAS  PubMed  Google Scholar 

  20. Cannelli V, Piersanti A, Galli G, Melini D (2018) Italian radon monitoring network (IRPN): a permanent network for near real-time monitoring of soil radon emission in Italy. Annals Geophysics 61(4): SE444. https://doi.org/10.4401/ag-7604

  21. Althoyaib SS, El–Taher A, (2015) Natural radioactivity measurements in groundwater from Al-Jawa, Saudi Arabia. J Radioanal Nucl Chem 304:547–552

    Article  CAS  Google Scholar 

  22. Pinault JL, Baubron JC (1997) Signal processing of diurnal and semidiurnal variations in radon and atmospheric pressure: a new tool for accurate in situ measurement of soil gas velocity, pressure gradient, and tortuosity. J Geophys Res 102:18101–18120. https://doi.org/10.1029/97JB00971

    Article  CAS  Google Scholar 

  23. Barberio M, Gori F, Barbieri M, Billi A, Devoti R, Doglioni C, Petitta M, Riguzzi F, Rusi S (2018) Diurnal and semidiurnal cyclicity of radon (222Rn) in groundwater, Giardino Spring, Central Apennines, Italy. Water 10:1276. https://doi.org/10.3390/w10091276

    Article  CAS  Google Scholar 

  24. Mentes G, Eper-Pápai I (2015) Investigation of temperature and barometric pressure variation effects on radon concentration in the Sopronbánfalva Geodynamic Observatory, Hungary. J Environ Radioact 149:64–72. https://doi.org/10.1016/j.jenvrad.2015.07.015

    Article  CAS  PubMed  Google Scholar 

  25. Crockett RGM, Gillmore GK, Phillips PS, Denman AR, Groves-Kirkby CJ (2006) Tidal synchronicity of built–environment radon levels in the UK. Geophys Res Lett 33:L05308. https://doi.org/10.1029/2005GL024950

    Article  CAS  Google Scholar 

  26. Barnet I, Prochzka J, Skalsk L, (1997) Do the earth tides have an influence on short–term variations in radon concentration? Radiat Prot Dosim 69:51–60. https://doi.org/10.1093/oxfordjournals.rpd.a031887

    Article  CAS  Google Scholar 

  27. Durridge Co Inc. (2018a) RAD7-electronic radon detector-user manual. https://durridge.Com/documentation/RAD7

Download references

Acknowledgements

This work was supported by the Basic Research Project (20-3411) of the Korea Institute of Geoscience and Mineral Resources (KIGAM), funded by the Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilyong Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Ha, K., Lee, SH. et al. A continuous radon monitoring system for integration into the climate change observation network. J Radioanal Nucl Chem 330, 547–554 (2021). https://doi.org/10.1007/s10967-021-07894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07894-7

Keywords

Navigation