Skip to main content
Log in

Energy-dependent characteristics of prompt neutron anisotropic emission by 244Cm and 240Pu according to Monte Carlo simulations

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

It is well known that prompt neutrons from nuclear fissions show anisotropic emission properties that have been studied for nuclear safeguards purposes. However, for further practical applications, thorough investigation of those properties from diverse perspectives needs to be done. In the present work, the energy dependency of prompt neutron anisotropic emissions by 244Cm and 240Pu was investigated using Monte Carlo simulations. In the results, the asymmetry of prompt neutron angular distributions showed a dependency on neutron energy thresholds, and its characteristic tendency was confirmed for both nuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source in three-dimensional space. The longest circumference that corresponds to the probability of occurrence of a specific emission angle can be found in the order nb, na or nc, and nref or nd

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Langner G, Stewart E, Pickrell M, Krick S, Ensslin N, Harker C (1998) Application guide to neutron multiplicity counting. LA-13422-M. Los Alamos National Laboratory. Los Alamos

  2. Cifarelli D, Hage W (1986) Models for a three-parameter analysis of neutron signal correlation measurements for fissile material assay. Nucl Instrum Methods Phys Res A 251:550–563

  3. Feynman R, De Hoffmann F, Serber R (1956) Dispersion of the neutron emission in U-235 fission. J Nucl Energy 3:64–69

    CAS  Google Scholar 

  4. Holewa L, Charlton W, Miller E, Pozzi S (2013) Using neutron angular anisotropy information to dynamically determine the ratio of the (a,n) rate to spontaneous fission rate for coincidence counting applications. Nucl Instrum Methods Phys Res, A. 701: 249–253

  5. Holewa L (2012) Angular anisotropy of correlated neutrons in lab frame of reference and application to detection and verification. M.S. Thesis. Nuclear Engineering. Texas A&M University. Texas. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11211

  6. Miller C (2011) Experiments and simulation of cross correlations on MOX Fuel. In: Proceedings of the 52nd Annual Meeting of the Institute of Nuclear Materials Management. 2821–2829

  7. Mueller M, Mattingly J (2016) Using anisotropies in prompt fission neutron coincidences to assess the neutron multiplication of highly multiplying subcritical plutonium assemblies. Nucl Instrum Methods Phys Res A 825:87–92

  8. Shin T, Fulvio A, Clarke S, Chichester D, Pozzi S (2019) Prompt fission neutron anisotropy in low-multiplying subcritical plutonium metal assemblies. Nucl Instrum Methods Phys Res A 915:110–115

  9. Kim C, Yeom J, Kim G (2019) Digital n-γ pulse shape discrimination in organic scintillators with a high-speed digitizer. J Radiat Prot Res 44(2):53–63

    Article  Google Scholar 

  10. Yoon S, Lee C, Kim H, Seo H (2021) Monte Carlo simulations of correlation between anisotropic emission characteristics of prompt fission neutrons and sample multiplication. Radiat Phys Chem, 181

  11. Budtz-Jorgensen C, Knitter H (1988) Simultaneous investigation of fission fragments and neutrons 252Cf (SF). Nucl Phys A 490:307

    Article  Google Scholar 

  12. Debenedetti S, Francis J, Preston W, Bonner T (1948) Angular dependence of coincidence between fission neutrons. Phys Rev 74:1645

    Article  CAS  Google Scholar 

  13. Petrov G, Vorobyev A, Sokolov V, Gagarski A, Guseva I, Shcherbakov O, Petrova V, Zavarukhina T, Valski G, Pleva Y, Kuzmina T (2005) Search for scission neutrons emitted in low energy fission of heavy nucleus. In: AIP Conf. Proc. 2005. 205: 212

  14. Vorobyev A, Shcherbakov O, Pleva Y, Gagarski A, Val'ski G, Petrov G, Petrova V, Zavarukhina T, (2009) Measurements of angular and energy distributions of prompt neutrons from thermal neutron-induced fission. Nucl Instrum Methods Phys Res, A. 598: 795–801

  15. Brandt R, Thompson S, Gatti R, Phillips L (1963) Mass and energy distributions in the spontaneous fission of some heavy isotopes. Phys Rev 131:2617

    Article  CAS  Google Scholar 

  16. Verbeke J, Nakae L, Vogt R (2018) Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu. Phys Rev C. 97, 044601

  17. Talou P, Stetcu I, Kawano T (2017) Comprehensive modeling of prompt fission neutrons and γ raysin the spontaneous fission of 252Cf. EPJ Web of Conferences. 146, 04031

  18. Malcolm J (2018) Nuclear engineering: a conceptual introduction to nuclear power. Butterworth-Heinemann, Oxford, United Kingdom

    Google Scholar 

  19. Montoya M (2019) Behavior of the average prompt neutron multiplicity as a function of post-neutron fragment mass in correlation with the pre-neutron fragment mass distribution in thermal neutron induced fission of 235U and 233U. Results Phys. 14, 102356

  20. Montoya M (2020) Oversize of the average prompt neutron multiplicity measured by the 1V1E method in the symmetric region of thermal neutron-induced fission of 239Pu. Results Phys 17:10

    Article  Google Scholar 

  21. Talou P (2013) Prompt fission neutrons and gamma rays in a Monte Carlo Hauser-Feshbach Formalism. Phys Procedia 47:39–46

    Article  CAS  Google Scholar 

  22. Dushin V, Hambsch F, Jakovlev V, Kalinin V, Kraev I, Laptev A, Nikolaev D, Petrov B, Petrov G, Petrova V, Pleva Y, Shcherbakov O, Shpakov V, Sokolov V, Vorobyev A, Zavarukhina T (2004) Facility for neutron multiplicity measurements in fission. Nucl Instrum Methods Phys Res, A. 516:539–553

  23. Vorobyeva A, Shcherbakov O, Gagarski A, Val’ski G, Petrov G (2010) Investigation of the prompt neutron emission mechanism in low energy fission of 235,233U(nth, f) and 252Cf(sf). EPJ Web Conf 8:03004

    Article  Google Scholar 

  24. Katsuhisa N, Yoshihiro N, Ikuo K, Itsuro K (1995) Measurement of fragment mass dependent kinetic energy and neutron multiplicity for thermal neutron induced fission of plutonium-239. J Nucl Sci Technol 32:404

    Article  Google Scholar 

  25. Talou P (2019) Nuclear fission data: from fundamental science to applications. LA-UR-19–31467. Los Alamos National Lab. Los Alamos

  26. Manailescu C (2014) Theoretical description of prompt fission neutron multiplicity and spectra. Ph.D Thesis. Faculty of Physics. University of Bucharest. Romania. https://arxiv.org/abs/1410.4386

  27. Talou P, Vogt R, Randrup J, Rising M, Pozzi S, Verbeke J, Andrews M, Clarke S, Jaffke P, Jandel M, Kawano T, Marcath M, Meierbachtol K, Nakae L, Rusev G, Sood A, Stetcu I, Walker C (2018) Correlated prompt fission data in transport simulations. Eur Phys J A 54:9

    Article  Google Scholar 

  28. Göök A, Hambsch F, Oberstedt S (2018) Prompt fission neutron emission in the reaction 235 U(n, f). Eur Phys J A 169:12

    Google Scholar 

  29. Litaize O, Serot O, Berge L (2015) Fission modelling with FIFRELIN. Eur Phys J A 51:177

    Article  Google Scholar 

  30. Göök A, Hambsch F, Vidali M (2014) Prompt neutron multiplicity in correlation with fragments from spontaneous fission of 252Cf. Phys Rev C 90:064611

  31. Nishio K, Nakagome Y, Yamamoto H, Kimura I (1998) Multiplicity and energy of neutrons from 235U(nth, f) fission fragments. Nucl Phys A 632:540–558

    Article  Google Scholar 

  32. Tsuchiya C, Nakagome Y, Yamana H, Moriyama H, Nishio K, Kanno I (2000) Simultaneous measurement of prompt neutrons and fission fragments for 239Pu(nth, f). J Nucl Sci Technol 37:941–948

    Article  CAS  Google Scholar 

  33. Rising E, Sood A (2017) Using the MCNP6.2 correlated fission multiplicity models, CGMF and FREYA. LA-UR-17–20799. Los Alamos National Laboratory. Los Alamos

  34. Randrup J, Vogt R (2009) Calculation of fission observables through event-by-event simulation. Phys Rev C 80:024601

  35. Verbeke M, Randrup J, Vogt R (2018) Fission reaction event yield algorithm FREYA 2.0.2. Comput Phys Commun 222:263–266

    Article  CAS  Google Scholar 

  36. Verbeke M, Hagmann C, Wright D (2016) Simulation of neutron and gamma ray emission from fission and photo fission. LLNL fission library 2.0. UCRL-AR-228518. Lawrence livermore national laboratory. Livermore

  37. Allison J, Amako K, Apostolakis J, Araujo H, Dubois P, Asai M, Heikkinen A (2006) Geant4 development and applications. IEEE Trans Nucl Sci 53:270–278

    Article  Google Scholar 

  38. Ahmad S, Islam M, Khan A, Khaliquzzaman M, Husain M, Rahman M (1979) The energy dependence of fission fragment anisotropy in fast-neutron-induced fission of Uranium-235. Nucl Sci Eng 71:2

    Article  Google Scholar 

  39. Simmons E, Henkel I (1960) Angular distribution of fragments in fission induced by MeV neutrons. Phys Rev 120:198

    Article  CAS  Google Scholar 

  40. Meadows W, Budtz-Jørgensen C (1983) Fission fragment angular distributions and total kinetic energies for 235U(n,f) from 0.18 to 8.83 MeV. Nuclear Data Sci Technol. Dordrecht. 740.

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07043515) and the Ministry of Science and ICT (NRF-2020M2C9A1068162), including the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using financial resources granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (2004024-0120-CG100). This study was also supported by the Research Base Construction Fund Support Program funded by Jeonbuk National University (2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Dong Kim.

Ethics declarations

Conflict of interest

The author declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, S., Seo, H., Kim, YS. et al. Energy-dependent characteristics of prompt neutron anisotropic emission by 244Cm and 240Pu according to Monte Carlo simulations. J Radioanal Nucl Chem 330, 481–491 (2021). https://doi.org/10.1007/s10967-021-07893-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07893-8

Keywords

Navigation