Skip to main content
Log in

Electrochemical properties of Ln(III) (Ln = Ce, Gd) in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical behaviors of Ln(III) (Ln = Ce, Gd) in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid were investigated by cyclic voltammetry and chronopotentiometry. The cyclic voltammograms revealed two electrochemical steps of Ln(III) to Ln(II) followed by Ln(II) to Ln metal. The diffusion coefficients for Ln(III) and Ln(II) were determined to be in order of ~ 10−8 cm/s in the temperature range 343 to 373 K. The activation energies for diffusion were 32.17 kJ mol−1 for Ce(III) and 53.99 kJ mol−1 for Gd(III). The rate constants of charge transfer obtained by different methods were in a good agreement altogether. The deposits were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang D-W, Liu Y-L, Yin T-Q, Li M, Han W, Chang K-K, Chai Z-F, Shi W-Q (2019) Co-reduction behaviors of Ce (III), Al (III) and Ga (III) on a W electrode: An exploration for liquid binary Al–Ga cathode. Electrochim Acta 319:869–877

    Article  CAS  Google Scholar 

  2. Wang X, Huang W, Gong Y, Jiang F, Zheng H, Zhu T, Long D, Li Q (2016) Electrochemical behavior of Th(IV) and its electrodeposition from ThF4–LiCl–KCl melt. Electrochim Acta 196:286–293

    Article  CAS  Google Scholar 

  3. Li M, Wang J, Han W, Yang X, Zhang M, Sun Y, Zhang M, Yan Y (2017) Electrochemical formation and thermodynamic evaluation of Pr–Zn intermetallic compounds in LiCl–KCl eutectic melts. Electrochim Acta 228:299–307

    Article  CAS  Google Scholar 

  4. Chen C-Y, Tsuda T, Kuwabata S (2020) Inorganic AlCl3-alkali metal thiocyanate ionic liquids as electrolytes for electrochemical Al technologies. Chem Commun 56:15297–15300

    Article  CAS  Google Scholar 

  5. Rout A, Krishna GM, Venkatesan KA (2019) Electrochemical, thermodynamics, and spectroscopic investigation of Eu(III) in T2EHDGA–[C4mim][NTf2] mixture. Sep Sci Technol 54:1669–1680

    Article  CAS  Google Scholar 

  6. Sankhe RH, Sengupta A, Mirashi NN, Murali MS (2015) Potentiostatic electro-deposition of 241Am using room temperature ionic liquids. J Radioanal Nucl Chem 303:647–653

    Article  CAS  Google Scholar 

  7. Manjum M, Tachikawa N, Serizawa N, Katayama Y (2019) Electrochemical behavior of samarium species in an amide-type ionic liquid at different temperatures. J Electrochem Soc 166:D483–D486

    Article  CAS  Google Scholar 

  8. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  PubMed  Google Scholar 

  9. Tu X, Zhang J, Zhang M, Cai Y, Haiyan L, Tian G, Wang Y (2017) Electrodeposition of aluminium foils on carbon electrodes in low temperature ionic liquid. RSC Adv 7:14790–14796

    Article  CAS  Google Scholar 

  10. Barrado E, Rodriguez JA, Hernández P, Castrillejo Y (2016) Electrochemical behavior of copper species in the 1-buthyl-3-methyl-imidazolium chloride (BMIMCl) ionic liquid on a Pt electrode. J Electroanal Chem 768:89–101

    Article  CAS  Google Scholar 

  11. NuLi Y, Yang J, Wang P (2006) Electrodeposition of magnesium film from BMIMBF4 ionic liquid. Appl Surf Sci 252:8086–8090

    Article  CAS  Google Scholar 

  12. Lin L-G, Yan J-W, Wang Y, Fu Y-C, Mao B-W (2006) An in situ STM study of cobalt electrodeposition on Au(111) in BMIBF4 ionic liquid. J Exp Nanosci 1:269–278

    Article  CAS  Google Scholar 

  13. Su C, An M, Yang P, Gu H, Guo X (2010) Electrochemical behavior of cobalt from 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Appl Surf Sci 256:4888–4893

    Article  CAS  Google Scholar 

  14. Giridhar P, Venkatesan KA, Srinivasan TG, Rao PRV (2007) Electrochemical behavior of uranium(VI) in 1-butyl-3-methylimidazolium chloride and thermal characterization of uranium oxide deposit. Electrochim Acta 52:3006–3012

    Article  CAS  Google Scholar 

  15. Moganty SS, Baltus RE, Roy D (2009) Electrochemical windows and impedance characteristics of [Bmim+][BF4−] and [Bdmim+][BF4−] ionic liquids at the surfaces of Au, Pt, Ta and glassy carbon electrodes. Chem Phys Lett 483:90–94

    Article  CAS  Google Scholar 

  16. O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J Chem Eng Data 53:2884–2891

    Article  CAS  Google Scholar 

  17. Xiao L, Johnson K (2003) Electrochemistry of 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate ionic liquid. J Electrochem Soc J Electrochem Soc 150:E307

    Article  CAS  Google Scholar 

  18. Zhang S, Zhang J, Zhang Y, Deng Y (2017) Nanoconfined ionic liquids. Chem Rev 117:6755–6833

    Article  CAS  PubMed  Google Scholar 

  19. Kuznetsov SA, Hayashi H, Minato K, Gaune-Escard M (2005) Electrochemical behavior and some thermodynamic properties of UCl[sub 4] and UCl[sub 3] dissolved in a LiCl-KCl eutectic melt. J Electrochem Soc 152:C203

    Article  CAS  Google Scholar 

  20. Chen B, Liu B, He Y, Luo D, Mu W, Yang Y, Yang Y, Peng S, Li X (2021) Complexation of cyclic glutarimidedioxime with cerium: surrogating for redox behavior of plutonium. Inorg Chem 60:3139–3148

    Article  CAS  PubMed  Google Scholar 

  21. Chandrasekar A, Sivaraman N, Ghanty TK, Suresh A (2019) Experimental evidence and quantum chemical insights into extraction and third phase aggregation trends in Ce(IV) organophosphates. Sep Purif Technol 217:62–70

    Article  CAS  Google Scholar 

  22. Jagadeeswara Rao C, Venkatesan KA, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2010) Electrochemical and thermodynamic properties of europium(III), samarium(III) and cerium(III) in 1-butyl-3-methylimidazolium chloride ionic liquid. J Nucl Mater 399:81–86

    Article  CAS  Google Scholar 

  23. Hatchett DW, Droessler J, Kinyanjui JM, Martinez B, Czerwinski KR (2013) The direct dissolution of Ce2(CO3)3 and electrochemical deposition of Ce species using ionic liquid trimethyl-n-butylammonium bis(trifluoromethanesulfonyl)imide containing bis(trifluoromethanesulfonyl)imide. Electrochim Acta 89:144–151

    Article  CAS  Google Scholar 

  24. Chou L-H, Cleland WE, Hussey CL (2012) Electrochemical and spectroscopic study of Ce(III) coordination in the 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid containing chloride ion. Inorg Chem 51:11450–11457

    Article  CAS  PubMed  Google Scholar 

  25. Chen T-S, Yeh K-JC, Huang K-L (2008) Anion effects on the electrochemical regeneration of Ce(IV) in nitric acid used for etching chromium. J Hazard Mater 152:922–928

    Article  CAS  PubMed  Google Scholar 

  26. Tang H, Pesic B (2015) Electrochemistry and the mechanisms of nucleation and growth of neodymium during electroreduction from LiCl–KCl eutectic salts on Mo substrate. J Nucl Mater 458:37–44

    Article  CAS  Google Scholar 

  27. Bermejo MR, Gómez J, Medina J, Martínez AM, Castrillejo Y (2006) The electrochemistry of gadolinium in the eutectic LiCl–KCl on W and Al electrodes. J Electroanal Chem 588:253–266

    Article  CAS  Google Scholar 

  28. Hirota K, Okabe TH, Saito F, Waseda Y, Jacob KT (1999) Electrochemical deoxidation of RE–O (RE = Gd, Tb, Dy, Er) solid solutions. J Alloys Compd 282:101–108

    Article  CAS  Google Scholar 

  29. Caravaca C, de Córdoba G, Tomás MJ, Rosado M (2007) Electrochemical behaviour of gadolinium ion in molten LiCl–KCl eutectic. J Nucl Mater 360:25–31

    Article  CAS  Google Scholar 

  30. Liu K, Liu Y-L, Yuan L-Y, Zhao X-L, Chai Z-F, Shi W-Q (2013) Electroextraction of gadolinium from Gd2O3 in LiCl–KCl–AlCl3 molten salts. Electrochim Acta 109:732–740

    Article  CAS  Google Scholar 

  31. Xiao L, Johnson KE (2003) Electrochemistry of 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate ionic liquid. J Electrochem Soc 150:E307

    Article  CAS  Google Scholar 

  32. Xiao L, Johnson K (2002) Electrochemistry of 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate ionic liquid. ECS Proc 19:910–922

    Article  Google Scholar 

  33. Li YN (2015) The investigation of electrochemical behavior of Ce(III), Gd(III) and Nd(III) in ionic liquids. Harbin Engineering University

  34. Aldous L, Silvester D, Villagran C, Pitner W, Compton R, Lagunas C, Hardacre C (2006) Electrochemical studies of gold and chloride in ionic liquids. New J Chem 30:1576–1583

    Article  CAS  Google Scholar 

  35. Yang X, He L, Qin S, Tao GH, Huang M, Lv Y (2014) Electrochemical and thermodynamic properties of Ln(III) (Ln = Eu, Sm, Dy, Nd) in 1-butyl-3-methylimidazolium bromide ionic liquid. PLoS One 9:e95832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Liu Z, Lu G, Yu J (2021) Investigation on electrochemical behaviors of MgCl2 impurity in LiCl–KCl melt. J Electroanal Chem 886:115131

    Article  CAS  Google Scholar 

  37. Brown ER, Large RF, Weissberger A, Rossiter BW (1964) Physical methods of chemistry. Wiley, Rochester, pp 423–428

    Google Scholar 

  38. Bagri P, Luo H, Popovs I, Thapaliya BP, Dehaudt J, Dai S (2018) Trimethyl phosphate based neutral ligand room temperature ionic liquids for electrodeposition of rare earth elements. Electrochem Commun 96:88–92

    Article  CAS  Google Scholar 

  39. Shakeela K, Dithya AS, Rao CJ, Rao GR (2015) Electrochemical behaviour of Cu(II)/Cu(I) redox couple in 1-hexyl-3-methylimidazolium chloride ionic liquid. J Chem Sci 127:133–140

    Article  CAS  Google Scholar 

  40. Tsierkezos NG (2008) Kinetic investigation of the electrochemical oxidation of bis(benzene)chromium(0) in diethyl ketone/N,N-dimethylformamide. J Solut Chem 37:1437–1448

    Article  CAS  Google Scholar 

  41. Kuznetsov SA, Gaune-Escard M (2006) Kinetics of electrode processes and thermodynamic properties of europium chlorides dissolved in alkali chloride melts. J Electroanal Chem 595:11–22

    Article  CAS  Google Scholar 

  42. Rudnev A (2020) Electrodeposition of lanthanides from ionic liquids and deep eutectic solvents. Russ Chem Rev 89:1463–1482

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21876035 and 51971071), and the National Defense Pre-Research Foundation of China (Grant No. KY11500180003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, Y., Shi, X. et al. Electrochemical properties of Ln(III) (Ln = Ce, Gd) in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. J Radioanal Nucl Chem 329, 1269–1276 (2021). https://doi.org/10.1007/s10967-021-07892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07892-9

Keywords

Navigation