Skip to main content
Log in

Spatial variation of radioiodine (129I) dissolution from sediment of a brackish lake beside a spent nuclear fuel reprocessing plant in Japan

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The dissolution and chemical forms of sedimentary radioiodine (129I) in aquatic sediments were evaluated in Lake Obuchi, which is situated adjacent to a spent nuclear fuel reprocessing plant in Japan. The dissolution flux of 129I from the sediment to its overlying water in the western part of the lake was negligible as with that reported in our previous study in the center part. The contribution of the soluble fraction of sedimentary 129I was larger in the western part of the lake than in the center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aldahan A, Alfimov V, Possner G (2007) 129I anthropogenic budget: major sources and sinks. Appl Geochem 22:606–618

    Article  CAS  Google Scholar 

  2. Hasegawa H, Kakiuchi H, Akata N, Ohtsuka Y, Hisamatsu S (2017) Regional and global contributions of anthropogenic iodine-129 in monthly deposition samples collected in North East Japan between 2006 and 2015. J Environ Radioact 171:65–73

    Article  CAS  PubMed  Google Scholar 

  3. Honda M, Matsuzaki H, Miyake Y, Maejima Y, Yamagata T, Nagai H (2015) Depth profile and mobility of 129I and 137Cs in soil originating from the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 146:35–43

    Article  CAS  PubMed  Google Scholar 

  4. How X, Hansen V, Aldahan A, Possnert G, Lind OC, Lujaniene G (2009) A review on speciation of iodine-129 in the environmental and biological samples. Anal Chim Acta 632:181–196

    Article  CAS  Google Scholar 

  5. Hou X, Povinec PP, Zhang L, Shi K, Biddulph D, Chang CC, Fan Y, Golser R, Hou Y, Ješkovský M, Jull AJT, Liu Q, Luo M, Steier P, Zhou W (2013) Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. Environ Sci Technol 47:3091–3098

    Article  CAS  PubMed  Google Scholar 

  6. Imai S, Tani T, Ishikawa Y, Tako Y, Takaku Y, Hisamatsu S (2020) Short-term metabolism of biologically incorporated 125I ingested by olive flounder (Paralichthys olivaceus). J Environ Radioact 214–215:106161

    Article  PubMed  CAS  Google Scholar 

  7. Otosaka S, Satoh Y, Suzuki T, Kuwabara J, Nakanishi T (2018) Distribution and fate of 129I in the seabed sediment off Fukushima. J Environ Radioact 192:208–218

    Article  CAS  PubMed  Google Scholar 

  8. Sahoo SK, Muramatsu Y, Yoshida S, Matsuzaki H, Rühm W (2009) Determination of 129I and 127I concentration in soil samples from the Chernobyl 30-km zone by AMS and ICP-MS. J Radiat Res 50:325–332

    Article  CAS  PubMed  Google Scholar 

  9. Satoh Y, Kakiuchi H, Ueda S, Akata N, Hisamatsu S (2019) Concentrations of iodine-129 in livestock, agricultural, and fishery products around spent nuclear fuel reprocessing plant in Rokkasho, Japan, during and after its test operation. Environ Monit Assess 191:61

    Article  PubMed  CAS  Google Scholar 

  10. Satoh Y, Ueda S, Kakiuchi H, Ohtsuka Y, Hisamatsu S (2019) Concentrations of iodine-129 in coastal surface sediments around spent nuclear fuel reprocessing plant at Rokkasho, Japan, during and after its test operation. J Radioanal Nucl Chem 322:2019–2024

    Article  CAS  Google Scholar 

  11. Satoh Y, Wada S, Hisamatsu S (2019) Seasonal variations in iodine concentrations in a brown alga (Ecklonia cava Kjellman) and a seagrass (Zostera marina L.) in the northwestern Pacific coast of central Japan. J Oceanogr 75:111–117

    Article  CAS  Google Scholar 

  12. Ueda S, Kakiuchi H, Hasegawa H, Akata N, Kawamura H, Hisamatsu S (2015) Concentration of 129I in aquatic biota collected from a lake adjacent to the spent nuclear fuel reprocessing plant in Rokkasho, Japan. Radiat Prot Dosim 167:176–180

    Article  CAS  Google Scholar 

  13. Ueda S, Kakiuchi H, Hisamatsu S (2018) Inventory of 129I in brackish lake sediments adjacent to a spent nuclear fuel reprocessing plant in Japan. J Radioanal Nucl Chem 318:89–96

    Article  CAS  Google Scholar 

  14. Amachi S (2008) Microbial contribution to global iodine cycling: volatilization, accumulation, reduction, oxidation, and sorption of iodine. Microbes Environ 23:269–276

    Article  PubMed  Google Scholar 

  15. Fuge R, Johnson CC (2015) Iodine and human health, the role of environmental geochemistry and diet, a review. Appl Geochem 63:282–302

    Article  CAS  Google Scholar 

  16. Miyake Y, Matuszaki H, Fujiwara T, Saito T, Yamagata T, Honda M, Muramatsu Y (2012) Isotopic ratio of radioactive iodine (129I/131I) released from Fukushima Daiichi NPP accident. Geochem J 46:327–333

    Article  CAS  Google Scholar 

  17. Satoh Y, Imai S (2021) Evaluation of radioiodine (129I) dissolution from sediment of a brackish lake beside a spent nuclear fuel reprocessing plant in Japan. J Environ Radioact 233:106608

    Article  CAS  PubMed  Google Scholar 

  18. Francois R (1987) The influence of humic substances on the geochemistry of iodine in nearshore and hemipelagic marine sediments. Geochim Cosmochim Acta 51:2417–2427

    Article  CAS  Google Scholar 

  19. Harvey GR (1980) A study of the chemistry of iodine and bromine in marine sediments. Mar Chem 8:327–332

    Article  CAS  Google Scholar 

  20. Schlegel ML, Reiller P, Mercier-Bion F, Barré N, Moulin V (2006) Molecular environment of iodine in naturally iodinated humic substances: insight from X-ray absorption spectroscopy. Geochim Cosmochim Acta 70:5536–5551

    Article  CAS  Google Scholar 

  21. Abdel-Moati MAR (1999) Iodine speciation in the Nile River Estuary. Mar Chem 65:211–225

    Article  CAS  Google Scholar 

  22. Cook PLM, Carpenter PD, Butler ECV (2000) Speciation of dissolved iodine in the waters of a humic-rich estuary. Mar Chem 69:179–192

    Article  CAS  Google Scholar 

  23. Luther GW III, Ferdelman T, Culberson CH, Kostka J, Wu J (1991) Iodine chemistry in the water column of the Chesapeake Bay: evidence for organic iodine forms. Estuar Coast Shelf Sci 32:267–279

    Article  Google Scholar 

  24. Satoh Y, Wada S, Hama T (2019) Vertical and seasonal variations of dissolved iodine concentration in coastal seawater on the northwestern Pacific coast of central Japan. Contin Shelf Res 188. http://www.ncbi.nlm.nih.gov/pubmed/103966

  25. Truesdale VW, Nausch G, Baker A (2001) The distribution of iodine in the Baltic Sea during summer. Mar Chem 74:87–98

    Article  CAS  Google Scholar 

  26. Wong GTF (1980) The stability of dissolved inorganic species of iodine in seawater. Mar Chem 9:13–24

    Article  CAS  Google Scholar 

  27. Wong GTF (1982) The stability of molecular iodine in seawater. Mar Chem 11:91–95

    Article  CAS  Google Scholar 

  28. Kennedy HA, Elderfield H (1987) Iodine diagenesis in pelagic deep-sea sediments. Geochim Cosmochim Acta 51:2489–2504

    Article  CAS  Google Scholar 

  29. Satoh Y, Imai S (2020) Evaluation of dissolution flux of iodine from brackish lake sediments under different temperature and oxygenic conditions. Sci Total Environ 707:135920

    Article  CAS  PubMed  Google Scholar 

  30. Ullman WJ, Aller RC (1980) Dissolved iodine flux from estuarine sediments and implications for the enrichment of iodine at the sediment water interface. Geochem Cosmochim Acta 44:1177–1184

    Article  CAS  Google Scholar 

  31. Ullman WJ, Aller RC (1983) Rates of iodine remineralization in terrigenous near-shore sediments. Geochem Cosmochim Acta 47:1423–1432

    Article  CAS  Google Scholar 

  32. Campos MLAM, Farrenkopf AM, Jickells TD, Luther GW III (1996) A comparison of dissolved iodine cycling at the Bermuda Atlantic time-series station and Hawaii ocean time-series station. Deep Sea Res II 43:455–466

    Article  CAS  Google Scholar 

  33. Edwards A, Truesdale VW (1997) Regeneration of inorganic iodine species in Loch Etive, a natural leaky incubator. Estuar Coast Shelf Sci 45:357–366

    Article  CAS  Google Scholar 

  34. Žic V, Carič M, Ciglenečki I (2013) The impact of natural water column mixing on iodine and nutrient speciation in a eutrophic anchialine pond (Rogoznica Lake, Croatia). Estuar Coast Shelf Sci 133:260–272

    Article  CAS  Google Scholar 

  35. de la Cuesta JL, Manley SL (2009) Iodine assimilation by marine diatoms and other phytoplankton in nitrate replete conditions. Limnol Oceanogr 54:1653–1664

    Article  Google Scholar 

  36. Hirano S, Ishii T, Nakamura R, Matsuba M, Koyanagi T (1983) Chemical forms of radioactive iodine in seawater and its effects upon marine organisms. Radioisotopes 32:319–322

    Article  CAS  PubMed  Google Scholar 

  37. Garland JA, Curtis H (1981) Emission of iodine from the sea surface in the presence of ozone. J Geophys Res 86:3183–3189

    Article  Google Scholar 

  38. Hayase S, Yabushita A, Kawasaki M, Enami S, Hoffmann MR, Colussi AJ (2010) Heterogeneous reaction of gaseous ozone with aqueous iodide in the presence of aqueous organic species. J Phys Chem A 114:6016–6021

    Article  CAS  PubMed  Google Scholar 

  39. Sakamoto Y, Yabushita A, Kawasaki M, Enami S (2009) Direct emission of I2 molecule and IO radical from the heterogeneous reactions of gaseous ozone with aqueous potassium iodide solution. J Phys Chem 113:7707–7713

    Article  CAS  Google Scholar 

  40. Fukui M, Fujiwara Y, Satta N (1996) Factors affecting interaction of radioiodide and iodate species with soil. J Environ Radioact 31:199–216

    Article  CAS  Google Scholar 

  41. Kaplan DI, Serne RJ, Parker KE, Kutnyakov IV (2000) Iodide sorption to subsurface sediments and illitic minerals. Environ Sci Technol 34:399–405

    Article  CAS  Google Scholar 

  42. Muramatsu Y, Fehn U, Yoshida S (2001) Recycling of iodine in fore-arc areas: evidence from the iodine brines in Chiba, Japan. J Environ Earth Planet Sci Lett 192:583–593

    Article  CAS  Google Scholar 

  43. Ueda S, Kondo K, Chikuchi Y (2005) Effects of the halocline on water quality and phytoplankton composition in a shallow brackish lake (Lake Obuchi, Japan). Limnology 6:149–160

    Article  CAS  Google Scholar 

  44. Ueda S, Kakiuchi H, Hasegawa H, Hisamatsu S (2011) Validation of a radionuclide transfer model in a brackish lake. Fusion Sci Technol 60:1296–1299

    Article  CAS  Google Scholar 

  45. Ueda S, Kawabata H, Hasegawa H, Kondo K (2000) Characteristics of fluctuations in salinity and water quality in brackish Lake Obuchi. Limnology 1:57–62

    Article  CAS  Google Scholar 

  46. Hou XL, Fogh CL, Kucera J, Andersson KG, Dahlgaard H, Nielsen SP (2003) Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Sci Total Environ 308:97–109

    Article  CAS  PubMed  Google Scholar 

  47. Campos MLAM (1997) New approach to evaluating dissolved iodine speciation in natural waters using cathodic stripping voltammetry and a storage study for preserving iodine species. Mar Chem 57:107–117

    Article  CAS  Google Scholar 

  48. Satoh Y, Otosaka S, Suzuki T (2014) Determination of total iodine concentration in aquatic environments using cathodic stripping voltammetry combined with sodium hypochlorite (NaClO) oxidation. J Water Environ Technol 12:201–210

    Article  Google Scholar 

  49. Hama T, Yanagi K, Hama J (2004) Decrease in molecular weight of photosynthetic products of marine phytoplankton during early diagenesis. Limnol Oceanogr 49:471–481

    Article  CAS  Google Scholar 

  50. Hanamachi Y, Hama T, Yanai T (2008) Decomposition process of organic matter derived from freshwater phytoplankton. Limnology 9:57–69

    Article  CAS  Google Scholar 

  51. Satoh Y, Hama T (2013) Stepwise alteration from fluorescent to non-fluorescent chlorophyll derivatives during early diagenesis of phytoplankton in aquatic environments. J Exp Mar Biol Ecol 449:36–44

    Article  CAS  Google Scholar 

  52. Ueda S, Ohtsuka Y, Kondo K, Inaba J (2005) Sedimentation rate in brackish Lake Obuchi, Rokkasho Village, Japan, bordered by nuclear fuel cycle facilities. J Radioanal Nucl Chem 264:343–349

    Article  CAS  Google Scholar 

  53. Ueda S, Chikuchi Y, Kondo K, Yamamuro M (2005) Macrobenthic fauna and its historical changes in brackish Lake Obuchi, Aomori, Prefecture, Japan. Jpn J Limnol 66:197–206 (in Japanese)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Ms. Monika Wilk-Alemany and Dr. William E. Kieser of A. E. Lalonde AMS Laboratory at the University of Ottawa, and Drs. Naoki Kinoshita and Jun Kuwahara of the Japan Atomic Energy Agency, for helping with the AMS analysis for our study. This study was supported by the Environment Research and Technology Development Fund [1RF-1902] of the Environmental Restoration and Conservation Agency of Japan. In addition, the study was performed under a contract with the government of Aomori Prefecture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhi Satoh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, Y., Imai, S. & Ueda, S. Spatial variation of radioiodine (129I) dissolution from sediment of a brackish lake beside a spent nuclear fuel reprocessing plant in Japan. J Radioanal Nucl Chem 329, 1477–1489 (2021). https://doi.org/10.1007/s10967-021-07890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07890-x

Keywords

Navigation