Skip to main content
Log in

Interaction between surface water and groundwater in the Alluvial Plain (anqing section) of the lower Yangtze River Basin: environmental isotope evidence

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study aimed to accurately understand the interaction between surface water and groundwater in the alluvial plain (Anqing section) of the lower Yangtze River basin. To this end, the distribution characteristics of hydrogen and oxygen stable isotopes and 222Rn isotopes in different water bodies were analyzed using the multiple environmental isotope tracing method. The results show that the Yangtze River is generally recharged by groundwater in the alluvial plain (Anqing section), whereas it is stimulated by human activities to recharge groundwater in the urban section of Anqing; the first-order stream of the Yangtze River, the Wan River, receives groundwater recharge in the hilly area and recharges groundwater in the flat area. The main sources of groundwater in the alluvial plain are precipitation and lake water, which account for 45.25% and 54.75%, respectively, of the total recharge. This study provides a reliable scientific basis for quality evaluation, pollution prevention and remediation of the water resources in the alluvial plain (Anqing section) of the lower Yangtze River basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Boano F, Harvey JW, Marion A, Packman AI, Revelli R, Ridolfi L, Wörman A (2014) Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Rev Geophys 52(4):603–679

    Article  Google Scholar 

  2. Malcolm IA, Soulsby C, Youngson AF (2006) High-frequency logging technologies reveal state-dependent hyporheic process dynamics: implications for hydroecological studies. Hydrol Process 20(3):615–622

    Article  Google Scholar 

  3. Boussinesq, J. (1877) Essai sur la theorie des eaux courantes. Memoires presentes par divers savants a l’Academie des Sciences de l’Institut National de France, Tome XXIII, No 1. Imprimerie Nationale, Paris. 23(1):1–680

  4. Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater-surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887

    Article  CAS  Google Scholar 

  5. Hu L, Xu Z, Huang W (2016) Development of a river-groundwater interaction model and its application to a catchment in Northwestern China. J Hydrol 543:483–500

    Article  Google Scholar 

  6. Zhu JF, Liu YY, Zhang S, Zheng H (2017) Review on the research of surface water and groundwater interactions. China Environ Sci 37(8):3002–3010

    Google Scholar 

  7. Song XF, Liu XC, Xia J et al (2007) Study on the transformation relationship between surface water and groundwater in huaisha river basin based on environmental isotope technology. Sci China Press 37(1):102–110

    Google Scholar 

  8. Zhong C, Yang Q, Ma H, Bian J, Zhang S, Lu X (2019) Application of environmental isotopes to identify recharge source, age, and renewability of phreatic water in Yinchuan Basin. Hydrological Proces. https://doi.org/10.1002/hyp.13468

    Article  Google Scholar 

  9. Bicalho CC, Batiot-Guilhe C, Taupin JD, Patris N, Van Exter S, Jourde H (2019) A conceptual model for groundwater circulation using isotopes and geochemical tracers coupled with hydrodynamics: a case study of the Lez karst system. France Chem Geol 528:118442

    Article  CAS  Google Scholar 

  10. Carreira PM, Marques JM, Espinha Marques J, Chaminé HI, Fonseca PE, Santos FM, Carvalho JM (2010) Defining the dynamics of groundwater in Serra da Estrela Mountain area, central Portugal: an isotopic and hydrogeochemical approach. Hydrogeol J 19(1):117–131

    Article  Google Scholar 

  11. Su XS, Lin XY (2003) Application of isotope techniques in the research of the groundwater circulation model and renewbility in baotou plain. J Jilin Uni (Earth Sci Ed) 33(4):503–508

    CAS  Google Scholar 

  12. Frei S, Gilfedder BS (2015) FINIFLUX: an implicit finite element model for quantification of groundwater fluxes and hyporheic exchange in streams and rivers using radon. Water Resour Res 51(8):6776–6786

    Article  Google Scholar 

  13. Yu, Z. B., LI, M. J., Liu, Y. C., et al. (2020). Study on hydraulic exchange of river water and groundwater based on radon isotope. Journal of Hohai University( Natural Sciences), 48(1):8–13

  14. Navarro-Martinez F, Salas Garcia A, Sanchez-Martos F, Baeza Espasa A, Molina Sanchez L, Rodriguez Perulero A (2017) Radionuclides as natural tracers of the interaction between groundwater and surface water in the River Andarax, Spain. J Environ Radioact 180:9–18

    Article  CAS  Google Scholar 

  15. Dimova NT, Burnett WC, Chanton JP, Corbett JE (2013) Application of radon-222 to investigate groundwater discharge into small shallow lakes. J Hydrol 486:112–122

    Article  CAS  Google Scholar 

  16. Bertin C, Bourg AC (1994) Radon-222 and chloride as natural tracers of the infiltration of river water into an alluvial aquifer in which there is significant river/groundwater mixing. Environ Sci Technol 28(5):794–798

    Article  CAS  Google Scholar 

  17. Martinez JL, Raiber M, Cox ME (2015) Assessment of groundwater-surface water interaction using long-term hydrochemical data and isotope hydrology: headwaters of the Condamine River, Southeast Queensland, Australia. Sci Total Environ 536:499–516

    Article  CAS  Google Scholar 

  18. Négrel P, Petelet-Giraud E, Barbier J, Gautier E (2003) Surface water–groundwater interactions in an alluvial plain: chemical and isotopic systematics. J Hydrol 277(3–4):248–267

    Article  Google Scholar 

  19. Su X, Xu W, Yang F, Zhu P (2015) Using new mass balance methods to estimate gross surface water and groundwater exchange with naturally occurring tracer222Rn in data poor regions: a case study in northwest China. Hydrol Process 29(6):979–990

    Article  Google Scholar 

  20. Hong YX (2017) General idea and strategic framework of ecological environment protection in the Yangtze river economic belt. Environ Prot 45(15):12–16

    Google Scholar 

  21. Liu, J., Tian, Y., Huang, K., & Yi, T. (2021). Spatial-temporal differentiation of the coupling coordinated development of regional energy-economy-ecology system: A case study of the Yangtze River Economic Belt. Ecological Indicators, 124(2):107394.

  22. Liu Y, Huang H, Sun T, Yuan Y, Pan Y, Xie Y, Wang X (2018) Comprehensive risk assessment and source apportionment of heavy metal contamination in the surface sediment of the Yangtze River Anqing section China. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7621-1

    Article  Google Scholar 

  23. Li FS, Han C, Lin DS et al (2017) Pollution characteristics and ecological risk assessment of heavy metals in the sediments from lakes of Anqing City and Anqing section of Yangtze River. J Agro-Environ Sci 36(3):574–582

    Google Scholar 

  24. Fang WW, Zhang L, Ye SX et al (2015) Pollution evaluation and health risk assessment of heavy metals from deposition in Anqing. China Environ Sci 35(12):3795–3803

    CAS  Google Scholar 

  25. Su XS, Lin XY (2004) Cycle pattern and renewability evaluation of groundwater in Yinchuan Basin: Isotopic evidences. Resour Sci 26(2):29–35

    Google Scholar 

  26. Roberto EK, Didier G, Hung KC et al (2017) The use of isotopes in evolving groundwater circulation models of regional continental aquifers: the case of the Guarani Aquifer System. Hydrol Process 33:2266–2278

    Google Scholar 

  27. Yin L, Hou G, Su X, Wang D, Dong J, Hao Y, Wang X (2010) Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation. Hydrogeol J 19(2):429–443

    Article  Google Scholar 

  28. Su X, Cui G, Du S, Yuan W, Wang H (2016) Using multiple environmental methods to estimate groundwater discharge into an arid lake (Dakebo Lake, Inner Mongolia, China). Hydrogeol J 24(7):1707–1722

    Article  CAS  Google Scholar 

  29. Chen Z, Wei W, Liu J, Wang Y, Chen J (2010) Identifying the recharge sources and age of groundwater in the Songnen Plain (Northeast China) using environmental isotopes. Hydrogeol J 19(1):163–176

    Article  CAS  Google Scholar 

  30. Su XS, Wang XY, Wan YY, Cao Y (2011) Research on interaction of surface water and groundwater of dakebo lake watershed. Yellow River 33(07):73–78

    Google Scholar 

  31. Su XS, Wan YY, Dong WH, Hou GC (2009) Hydraulic relationship between Malianhe River and groundwater : hydrogeochemical and isotopic evidences. J Jilin Uni (Earth Sci Ed) 39(06):1087–1094

    CAS  Google Scholar 

  32. Teng YG, Zuo R, Wang JS et al (2010) Progress in geochemistry of regional groundwater evolution. Adv Water Sci 21(1):127–136

    CAS  Google Scholar 

  33. Cartwright I, Weaver TR, Fifield LK (2006) Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: an example from the southeast Murray Basin. Aust Chem Geol 231(1–2):38–56

    Article  CAS  Google Scholar 

  34. Zhang YW, Su XS, Wang QY, Yang FT, Ren WL, Zhao ZY (2020) Study on surface water-groundwater interactions in the western plain of the Ili Valley. J Beijing Normal Uni (Natural Sci) 56(05):664–674

    Google Scholar 

  35. Hofmann H, Gilfedder BS, Cartwright I (2011) A novel method using a silicone diffusion membrane for continuous (2)(2)(2)Rn measurements for the quantification of groundwater discharge to streams and rivers. Environ Sci Technol 45(20):8915–8921

    Article  CAS  Google Scholar 

  36. Santos IR, Dimova N, Peterson RN, Mwashote B, Chanton J, Burnett WC (2009) Extended time series measurements of submarine groundwater discharge tracers (222Rn and CH4) at a coastal site in Florida. Mar Chem 113(1–2):137–147

    Article  CAS  Google Scholar 

  37. Schmidt A, Gibson JJ, Santos IR et al (2010) The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance. Hydrol Earth Syst Sci 14:79–89

    Article  CAS  Google Scholar 

  38. Cook PG, Lamontagne S, Berhane D, Clark JF (2006) Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6. Water Resour Res. https://doi.org/10.1029/2006WR004921

    Article  Google Scholar 

  39. Xu W, Su X, Dai Z, Yang F, Zhu P, Huang Y (2017) Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China. Hydrogeol J 25(7):2015–2029

    Article  CAS  Google Scholar 

  40. Hoehn E, von Gunten HR (1989) Radon in groundwater: A tool to assess infiltration from surface waters to aquifers. Water Resour Res 25(8):1795–1803

    Article  CAS  Google Scholar 

  41. Dincer T, Payne BR, Florkowski T, Martinec J, Tongiorgi E (1970) Snowmelt runoff from measurements of tritium and oxygen-18. Water Resour Res 6(1):110–124

    Article  Google Scholar 

  42. Mcdonnell JJ, Stewart MK, Owens IF (1991) Effect of catchment-scale subsurface mixing on stream isotopic response[J]. Water Resour Res 27(12):3065–3073

    Article  CAS  Google Scholar 

  43. Xu W (2015) Groundwater cycle patterns and its response to human activities in Nalenggele alluvial-proluvial plain [dissertation]. Jinlin University, Chang Chun

    Google Scholar 

  44. Zhang BB, Xu Q, Jiang CW (2017) Characteristics of δD and δ 18O in the precipitation and evaporation sources in anqing. Sci Silvae Sience 53(12):20–29

    Google Scholar 

  45. Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  CAS  Google Scholar 

  46. Wu H, Li J, Song F, Zhang Y, Zhang H, Zhang C, He B (2018) Spatial and temporal patterns of stable water isotopes along the Yangtze River during two drought years. Hydrol Process 32(1):4–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Geological Survey Project of the China Geological Survey under Grant DD20189250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosi Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, Q., Su, X., Zheng, S. et al. Interaction between surface water and groundwater in the Alluvial Plain (anqing section) of the lower Yangtze River Basin: environmental isotope evidence. J Radioanal Nucl Chem 329, 1331–1343 (2021). https://doi.org/10.1007/s10967-021-07889-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07889-4

Keywords

Navigation