Skip to main content
Log in

Studies on Ca substituted CePO4 as waste form matrix for the immobilization of simulated high level radioactive waste

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The monazite phase, Ce0.9Ca0.1PO4, was prepared and explored as a matrix for the nuclear waste immobilization. Ce0.9Ca0.1PO4 and 20 wt.% simulated waste loaded Ce0.9Ca0.1PO4 were prepared using solution chemistry route and sintered at 1200 °C. Various characterizations such as XRD, Raman, SEM, TGA, UV–Vis and FTIR analysis were carried out. XRD analysis on bare monazite confirms the formation of single phase materials and simulated waste loaded monazite reveals the formation of cubic structured Pd and ZrP2O7 as minor phases present in the system. XPS results on Ce0.9Ca0.1PO4 revealed shift in Ce-3d peak position compared to the reported CePO4 confirming the influence of Ca2+. The UV–Vis result shows the charge compensation existing in the materials which is essential for the accommodation of higher valence cations. FTIR and Raman results of waste loaded Ce0.9Ca0.1PO4 showed peak shift and broadening due to the incorporation of various elements in the crystal lattice. Chemical durability studies on 20 wt.% simulated waste loaded Ce0.9Ca0.1PO4 showed Mo leaching which could be avoided by preparing monazite—IPG glass–ceramic composite. The results suggest that, Ce0.9Ca0.1PO4—IPG glass–ceramic composite can be a versatile matrix for the immobilization of high level radioactive waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goel A, McCloy JS, Pokorny R, Kruger AA (2019) Challenges with vitrification of hanford high-level waste (HLW) to borosilicate glass—an overview. J Non-Cryst Solids: X 4:100033. https://doi.org/10.1016/j.nocx.2019.100033

    Article  CAS  Google Scholar 

  2. Ojovan MI, Lee WE (2011) Glassy wasteforms for nuclear waste immobilization. Metall Mater Trans A 42(4):837–851. https://doi.org/10.1007/s11661-010-0525-7

    Article  CAS  Google Scholar 

  3. Asuvathraman R, Kutty KVG (2014) Thermal expansion behaviour of a versatile monazite phase with simulated HLW: a high temperature x-ray diffraction study. Thermochim Acta 581:54–61. https://doi.org/10.1016/j.tca.2014.02.009

    Article  CAS  Google Scholar 

  4. Joseph K, Asuvathraman R, Madhavan RR, Jena H, Kutty KVG, Rao PRV (2011) Studies on novel matrices for high level waste from fast reactor fuel reprocessing. Energy Procedia 7:518–524. https://doi.org/10.1016/j.egypro.2011.06.071

    Article  CAS  Google Scholar 

  5. Ojovan MI, Lee WE (2014) New Immobilising Hosts and Technologies. In: Ojovan MI, Lee WE (eds) An Introduction to Nuclear Waste Immobilisation. Elsevier, Oxford, pp 283–305. https://doi.org/10.1016/B978-0-08-099392-8.00018-8

    Chapter  Google Scholar 

  6. Lutze W, Ewing RC (1988) Radioactive waste forms for the future. North-Holland, Amsterdam

    Google Scholar 

  7. Ravikumar R, Gopal B, Jena H (2020) Fabrication, chemical and thermal stability studies of crystalline ceramic wasteform based on oxyapatite phosphate host LaSr4(PO4)3O for high level nuclear waste immobilization. J Hazard Mater 394:122552. https://doi.org/10.1016/j.jhazmat.2020.122552

    Article  CAS  PubMed  Google Scholar 

  8. Jena H, Maji BK, Asuvathraman R, Kutty KVG (2015) Effect of pyrochemical chloride waste loading on thermo-physical properties of borosilicate glass bonded Sr-chloroapatite composites. Mater Chem Phys 162:188–196. https://doi.org/10.1016/j.matchemphys.2015.05.057

    Article  CAS  Google Scholar 

  9. Raja Madhavan R, Gandhi AS, Govindan Kutty KV (2017) Sodium titanium phosphate NaTi2(PO4)3 waste forms for immobilization of simulated high level waste from fast reactors. Ceram Int 43(12):9522–9530. https://doi.org/10.1016/j.ceramint.2017.04.138

    Article  CAS  Google Scholar 

  10. Asuvathraman R, Joseph K, Raja Madhavan R, Sudha R, Krishna Prabhu R, Govindan Kutty KV (2015) A versatile monazite–IPG glass–ceramic waste form with simulated HLW: Synthesis and characterization. J Eur Ceram Soc 35(15):4233–4239. https://doi.org/10.1016/j.jeurceramsoc.2015.07.025

    Article  CAS  Google Scholar 

  11. Asuvathraman R, Gnanasekar KI, Clinsha PC, Ravindran TR, Govindan Kutty KV (2015) Investigations on the charge compensation on Ca and U substitution in CePO4 by using XPS, XRD and Raman spectroscopy. Ceram Int 41:3731–3739. https://doi.org/10.1016/j.ceramint.2014.11.048

    Article  CAS  Google Scholar 

  12. Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S (2016) Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 6(1):31641. https://doi.org/10.1038/srep31641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Montel J-M, Devidal J-L, Avignant D (2002) X-ray diffraction study of brabantite–monazite solid solutions. Chem Geol 191(1):89–104. https://doi.org/10.1016/S0009-2541(02)00150-X

    Article  CAS  Google Scholar 

  14. Clavier N, Podor R, Dacheux N (2011) Crystal chemistry of the monazite structure. J Eur Ceram Soc 31(6):941–976. https://doi.org/10.1016/j.jeurceramsoc.2010.12.019

    Article  CAS  Google Scholar 

  15. Borgese L, Zacco A, Bontempi E, Colombi P, Bertuzzi R, Ferretti E, Tenini S, Depero LE (2009) Total reflection of X-ray fluorescence (TXRF): a mature technique for environmental chemical nanoscale metrology. Meas Sci Technol 20(8):084027. https://doi.org/10.1088/0957-0233/20/8/084027

    Article  CAS  Google Scholar 

  16. Pashkova GV, Revenko AG (2015) A review of application of total reflection X-ray fluorescence spectrometry to water analysis. Appl Spectrosc Rev 50(6):443–472. https://doi.org/10.1080/05704928.2015.1010205

    Article  Google Scholar 

  17. Prange A (1989) Total reflection X-ray spectrometry: method and applications. Spectrochim Acta Part B 44(5):437–452. https://doi.org/10.1016/0584-8547(89)80049-7

    Article  Google Scholar 

  18. Alov NV (2011) Total reflection X-ray fluorescence analysis: Physical foundations and analytical application (A review). Inorg Mater 47(14):1487–1499. https://doi.org/10.1134/s0020168511140020

    Article  CAS  Google Scholar 

  19. Klockenkämper R, von Bohlen A (2014) Total-reflection X-ray fluorescence analysis and related methods. Wiely. https://doi.org/10.1002/9781118985953.ch02

    Book  Google Scholar 

  20. Marguí E, Zawisza B, Sitko R (2014) Trace and ultratrace analysis of liquid samples by X-ray fluorescence spectrometry. TrAC Trends Anal Chem 53:73–83. https://doi.org/10.1016/j.trac.2013.09.009

    Article  CAS  Google Scholar 

  21. Misra NL (2011) Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence characterizations of nuclear materials. Pramana 76(2):201–212. https://doi.org/10.1007/s12043-011-0046-y

    Article  CAS  Google Scholar 

  22. Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B 62(1):63–68. https://doi.org/10.1016/j.sab.2006.12.002

    Article  CAS  Google Scholar 

  23. Vinothkumar G, Arun IL, Arunkumar P, Ahmed W, Ryu S, Cha SW, Babu KS (2018) Structure dependent luminescence, peroxidase mimetic and hydrogen peroxide sensing of samarium doped cerium phosphate nanorods. J Mater Chem B 6(41):6559–6571. https://doi.org/10.1039/C8TB01643G

    Article  CAS  PubMed  Google Scholar 

  24. Sumaletha N, Rajesh K, Mukundan P, Warrier KGK (2009) Environmentally benign sol–gel derived nanocrystalline rod shaped calcium doped cerium phosphate yellow-green pigment. J Sol-Gel Sci Technol 52(2):242–250. https://doi.org/10.1007/s10971-009-2020-4

    Article  CAS  Google Scholar 

  25. Ayed B (2012) Crystal structure and ionic conductivity of AgCr2(PO4)(P2O7). C R Chim 15(7):603–608. https://doi.org/10.1016/j.crci.2012.05.007

    Article  CAS  Google Scholar 

  26. Salimi E, Javadpour J (2012) Synthesis and characterization of nanoporous monetite which can be applicable for drug carrier. J Nanomater 2012:931492. https://doi.org/10.1155/2012/931492

    Article  CAS  Google Scholar 

  27. Cao Y, Xia X, Liu Y, Wang N, Zhang J, Zhao D, Xia Y (2020) Scalable synthesizing nanospherical Na4Fe3(PO4)2(P2O7) growing on MCNTs as a high-performance cathode material for sodium-ion batteries. J Power Sour 461:228130. https://doi.org/10.1016/j.jpowsour.2020.228130

    Article  CAS  Google Scholar 

  28. Liu X, Xu Y, Jin R, Yin P, Sun L, Liang T, Gao S (2014) Facile synthesis of hierarchical Fe4(P2O7)3 for removal of U(VI). J Mol Liq 200:311–318. https://doi.org/10.1016/j.molliq.2014.10.021

    Article  CAS  Google Scholar 

  29. Petruska EA, Muthu DVS, Carlson S, Krogh Andersen AM, Ouyang L, Kruger MB (2010) High-pressure Raman and infrared spectroscopic studies of ZrP2O7. Solid State Commun 150(5):235–239. https://doi.org/10.1016/j.ssc.2009.11.022

    Article  CAS  Google Scholar 

  30. Sales BC, White CW, Boatner LA (1983) A comparison of the corrosion characteristics of synthetic monazite and borosilicate glass containing simulated nuclear defense waste. Nucl Chem Waste Manage 4(4):281–289. https://doi.org/10.1016/0191-815X(83)90053-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Director, IGCAR, MC&MFCG, Associate Director, FMCG for their support and encouragement. Authors would like to thank Dr. K. Sundararajan, Dr. Hrudananda Jena and Dr. Manish Chandra from MC&MFCG for FTIR & UV-Vis, XRD and FIB-SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Asuvathraman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanavel, S., Raja Madhavan, R. & Asuvathraman, R. Studies on Ca substituted CePO4 as waste form matrix for the immobilization of simulated high level radioactive waste. J Radioanal Nucl Chem 329, 1191–1197 (2021). https://doi.org/10.1007/s10967-021-07883-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07883-w

Keywords

Navigation