Skip to main content

An analysis on geographical ascendancy and the effects of physico-chemical parameters on radionuclides concentration in the central and northern coastal regions of Kerala, India


The present study investigates the correlation between physico-chemical parameters and natural radionuclides, and relates its distribution with geographical factors of the study area. For the same, the activity concentration of natural radionuclides such as 40K, 226Ra, and 232Th in sand samples collected from the central and northern parts of coastal Kerala, India has been measured using high efficiency NaI (Tl) detector and compared the concentration with ‘favoring factors for distribution’ that is lithology and drainage pattern. The activity concentration was also correlated with multiple phyisco-chemical parameters of the sand samples. The details of which are discussed in the manuscript.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    Wilson MJ (2004) Weathering of the primary rock-forming minerals: PROCESSES, products and rates. Clay Miner 39(3):233–266

    CAS  Article  Google Scholar 

  2. 2.

    Righi D, Meunier A (1995) Origin of clays by rock weathering and soil formation. In: Origin and mineralogy of clays. Springer, pp 43–161

  3. 3.

    Overstreet WC (1967) The geologic occurrence of monazite, US Geological Survey; for sale by the Supt. of Docs. US Govt. Print. Of

  4. 4.

    Vineethkumar V, Akhil R, Shimod KP, Prakash V (2021) Sources of monazite patches and dynamics of radionuclides concentration in the high background radiation areas of Kollam District, Kerala. J Radioanal Nucl Chem 327(1):189–198

    CAS  Article  Google Scholar 

  5. 5.

    Mahamood KN, Divya PV, Vineethkumar V, Prakash V (2020) Dynamics of radionuclides activity, radon exhalation rate of soil and assessment of radiological parameters in the coastal regions of Kerala. India J Radioanal Nucl Chem 324(3):949–961

    CAS  Article  Google Scholar 

  6. 6.

    Ramsiya M, Joseph A, Eappen KP, Visnuprasad AK (2019) Activity concentrations of radionuclides in soil samples along the coastal areas of Kerala, India and the assessment of radiation hazard indices. J Radioanal Nucl Chem 320(2):291–298

    CAS  Article  Google Scholar 

  7. 7.

    Shetty PK, Narayana Y, Siddappa K (2006) Vertical profiles and enrichment pattern of natural radionuclides in monazite areas of coastal Kerala. J Environ Radioact 86(1):132–142

    CAS  Article  Google Scholar 

  8. 8.

    Pan L, Fang G, Wang Y, Wang L, Su B, Li D, Xiang B (2018) Potentially toxic element pollution levels and risk assessment of soils and sediments in the upstream river, Miyun Reservoir, China. Int J Environ Res Public Health 15(11):11

    Article  Google Scholar 

  9. 9.

    Baeza A, del Rio M, Jimenez A, Micro C, Paniagua J (1995) Influence of geology and soil particle size on the surface-area/volume activity ratio for natural radionuclides. J Radioanalyt Nucl Chem 189(2):289–299

    CAS  Article  Google Scholar 

  10. 10.

    Shenber MA, Eriksson A (1993) Sorption behaviour of caesium in various soils. J Environ Radioact 19(1):41–51

    CAS  Article  Google Scholar 

  11. 11.

    Lee MH, Lee CW, Boo BH (1997) Distribution and characteristics of 239,240 Pu and 137Cs in the soil of Korea. J Environ Radioact 37(1):1–16

    CAS  Article  Google Scholar 

  12. 12.

    Krouglov SV, Kurinov AD, Alexakhin RM (1998) Chemical fractionation of 90Sr, 106Ru, 137Cs and 144Ce in Chernobyl-contaminated soils: an evolution in the course of time. J Environ Radioact 38(1):59–76

    CAS  Article  Google Scholar 

  13. 13.

    Tsai TL, Liu CC, Chuang CY, Wei HJ, Men LC (2011) The effects of physico-chemical properties on natural radioactivity levels, associated dose rate and evaluation of radiation hazard in the soil of Taiwan using statistical analysis. J Radioanal Nucl Chem 288(3):927–936

    CAS  Article  Google Scholar 

  14. 14.

    Narayana Y, Rajashekara KM (2010) The importance of physico-chemical parameters on the speciation of natural radionuclides in riverine ecosystems. J Environ Radioact 101(11):958–964

    CAS  Article  Google Scholar 

  15. 15.

    Chandrasekaran A, Rajalakshmi A, Ravisankar R, Vijayagopal P, Venkatraman B (2015) Measurements of natural gamma radiations and effects of physico-chemical properties in soils of Yelagiri hills, Tamilnadu India with statistical approach. Procedia Earth Planet Sci 11:531–538

    CAS  Article  Google Scholar 

  16. 16.

    Kaliprasad CS, Narayana Y (2018) Mineralogy and physico-chemical parameters on the behavior of natural radionuclides in the riverine environs of Hemavathi, South India. Radiat Phys Chem 151:99–107

    CAS  Article  Google Scholar 

  17. 17.

    Prakash MM, Kaliprasad CS, Narayana Y (2019) Distribution of 210 Po and 210 Pb radionuclides and their dependence on physico-chemical parameters of soil in Madikeri taluk, Coorg district, Karnataka. India J Radioanal Nucl Chem 321(3):1081–1091

    CAS  Article  Google Scholar 

  18. 18.

    Volchok HL, de Planque G (eds) (1983) EML procedure manual, 26th edn. Environmental Measurement Laboratory, New York

  19. 19.

    Alnour IA, Wagiran H, Ibrahim N, Laili Z, Omar M, Hamzah S, Idi BY (2012) Natural radioactivity measurements in the granite rock of quarry sites, Johor, Malaysia. Radiat Phys Chem 81:1842–1847

    CAS  Article  Google Scholar 

  20. 20.

    Prakash MM, Kaliprasad CS, Narayana Y (2017) Studies on natural radioactivity in rocks of Coorg district, Karnataka state, India. J Radiat Res Appl Sci 10:128–134

    CAS  Article  Google Scholar 

  21. 21.

    Mehra R, Singh S, Singh K (2007) Sonkawade R (2007) 226Ra, 232Th and 40K analysis in soil samples from some areas of Malwa region, Punjab, India using gamma ray spectrometry. Environ Monit Assess 134(1–3):333

    CAS  Article  Google Scholar 

  22. 22.

    Vineethkumar V, Kaliprasad CS, Prakash V (2018) Assessment of natural radioactivity and radiation index parameters in the coastal environment of Kerala. Radiat Prot Environ 41(2):99

    Article  Google Scholar 

  23. 23.

    UNSCEAR (2000) United Nations Scientific Committee on the effects of atomic radiation, sources effects, and risks of ionizing radiation. Report to the General Assembly, United Nations, New York, USA

  24. 24.

    Respaut JP, Lancelot JR (1983) U/Pb dating on zircons and monazites of the synmetamorphic emplacement of the Ansignan charnockite (Agly Massif-France). NEUES Jahrb Mineral Abh 147(1):21–34

    CAS  Google Scholar 

  25. 25.

    Skridlaite G, Baginski B, Whitehouse M (2008) Significance of ∼ 15 Ga zircon and monazite ages from charnockites in southern Lithuania and NE Poland. Gondwana Res 14(4):663–674

    CAS  Article  Google Scholar 

  26. 26.

    Vineethkumar V, Akhil R, Shimod KP, Prakash V (2020) Geospatial analysis of the source of monazite deposits and the dynamics of natural radionuclides in the selected coastal environs of Kerala, south west coast of India. J Radioanal Nucl Chem 326(2): 983–996

  27. 27.

    Narayanaswamy S, Lakshmi P (1967) Charnockitic rocks of tinnevelly district, Madras. J Geol Soc India 8:35–50

    Google Scholar 

  28. 28.

    Warren Clare J, Greenwood LV, Argles TW, Roberts NMW, Parrish RR, Harris NBW (2018) Garnet–monazite rare earth element relationships in sub-solidus metapelites: A case study from Bhutan. Geol Soc London Spec Publ 478(1):145–166

    Article  Google Scholar 

  29. 29.

    Adam AMA, Eltayeb MAH (2012) Multivariate statistical analysis of radioactive variables in two phosphate ores from Sudan. J Environ Radioact 107:23–43

    CAS  Article  Google Scholar 

Download references


The first author wishes to acknowledge the University Grants Commission, New Delhi, for awarding fellowship as JRF. The technical help received from Mr. Shabeer Muhammad C. V., Mr. Aneesh Mathew, Mr. Jayesh Jose, Mr. Sony Abraham, Mr. Abhilash Joseph, Mr. Priyesh Mathew, Mr. Manu Joseph, Mr. Anoop George, Mr. Vishnu Reveendran, Mr. Dhanil A. S., Mr. Shyam Sabu, Mr. Jesbin Thomas, Mr. Ajith Raghavan, Mr. Athul Mary Augustine, Mr. Shine Benny and Mr. Dhaneesh Suresh is gratefully acknowledged.

Author information



Corresponding author

Correspondence to V. Prakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vineethkumar, V., Akhil, R., Shimod, K.P. et al. An analysis on geographical ascendancy and the effects of physico-chemical parameters on radionuclides concentration in the central and northern coastal regions of Kerala, India. J Radioanal Nucl Chem 329, 1313–1329 (2021).

Download citation


  • Lithology
  • Drainage
  • Physico-chemical parameters
  • 40K
  • 226Ra
  • 232Th
  • Central and northern Kerala