Skip to main content
Log in

Comprehensive comparisons of iodate adsorption onto corn stalk hydrothermal and pyrolytic biochar

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Pyrolytic biochar and hydrothermal biochar of corn stalk were prepared at different temperatures, and their abilities to remove iodate were compared. The characterization results show that the preparation temperature determines the degree of carbonization and the specific surface area of biochar. Pyrolytic biochar has a larger specific surface area than hydrothermal biochar, but retains fewer oxygen-containing functional groups. The adsorption capacity of hydrothermal biochar (16.87 mg g−1) is better than that of pyrolytic biochar (10.31 mg g−1). Corn stalk hydrothermal biochar is fully recyclable for multiple adsorption/desorption trials, which makes it extremely attractive for iodate contaminant separation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balter M (1995) Radiation biology: Chernobyl’s thyroid cancer toll. Science 270:1758–1759

    Article  CAS  Google Scholar 

  2. Xu S, Zhang L, Freeman SPHT, Hou X, Shibata Y, Sanderson D, Cresswell A, Doi T, Tanaka A (2015) Speciation of radiocesium and radioiodine in aerosols from tsukuba after the fukushima nuclear accident. Environ Sci Technol 49(2):1017–1024. https://doi.org/10.1021/es504431w.406

    Article  CAS  PubMed  Google Scholar 

  3. Moore RC, Pearce CI, Morad JW, Chatterjee S, Levitskaia TG, Asmussen RM, Lawter AR, Neeway JJ, Qafoku NP, Rigali MJ, Saslow SA, Szecsody JE, Thallapally PK, Wang G, Freedman VL (2019) Iodine immobilization by materials through sorption and redox-driven processes: a literature review. Sci Total Environ S0048–9697(19):32737–32738. https://doi.org/10.1016/j.scitotenv.2019.06.166

    Article  CAS  Google Scholar 

  4. Lin J, Liu Y, Zhang GH (2015) Research progress in the removal of radioactive iodonucleoid from the water body. Ind Water Treat 35:10–18

    Google Scholar 

  5. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interfac 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  Google Scholar 

  6. Elaigwu SE, Rocher V, Kyriakou G, Greenway GM (2014) Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell. J Ind Eng Chem 20(5):3467–3473. https://doi.org/10.1016/j.jiec.2013.12.036

    Article  CAS  Google Scholar 

  7. Tong Y, McNamara PJ, Mayer BK (2019) Adsorption of organic micropollutants onto biochar: a review of relevant kinetics, mechanisms and equilibrium. Environ Sci: Water Res Technol 5(5):821–838. https://doi.org/10.1039/c8ew00938d

    Article  CAS  Google Scholar 

  8. Han X, Chu L, Liu S, Chen T, Ding C, Yan J, Quan G (2015) Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar. BioResources 10(2):2836–2849. https://doi.org/10.15376/biores.10.2.2836-2849

    Article  CAS  Google Scholar 

  9. Zhang P, Li Y, Cao Y, Han L (2019) Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour Technol 285:121348. https://doi.org/10.1016/j.biortech.2019.121348

    Article  CAS  PubMed  Google Scholar 

  10. Chen T, Zhang N, Xu Z, Hu X, Ding Z (2018) Integrated comparisons of thorium(IV) adsorption onto alkali-treated duckweed biomass and duckweed-derived hydrothermal and pyrolytic biochar. Environ Sci Pollut R 26(3):2523–2530. https://doi.org/10.1007/s11356-018-3789-x

    Article  CAS  Google Scholar 

  11. Hansen V, Müller-Stöver D, Ahrenfeldt J, Holm JK, Henriksen UB, Hauggaard-Nielsen H (2015) Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenerg 72:300–308. https://doi.org/10.1016/j.biombioe.2014.10.013

    Article  CAS  Google Scholar 

  12. Meng J, Wang L, Liu X, Wu J, Brookes PC, Xu J (2013) Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresource Technol 142:641–646. https://doi.org/10.1016/j.biortech.2013.05.086

    Article  CAS  Google Scholar 

  13. Zhang K, Chen T (2018) Dried powder of corn stalk as a potential biosorbent for the removal of iodate from aqueous solution. J Environ Radioactiv 190:73–80. https://doi.org/10.1016/j.jenvrad.2018.05.008

    Article  CAS  Google Scholar 

  14. Liu P, Chen T, Zheng J (2020) Removal of iodate from aqueous solution using diatomite/nano titanium dioxide composite as adsorbent. J Radioanal Nucl Chem 324(3):1179–1188. https://doi.org/10.1007/s10967-020-07161-1

    Article  CAS  Google Scholar 

  15. Olgun A, Atar N (2012) Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. J Ind Eng Chem 18(5):1751–1757

    Article  CAS  Google Scholar 

  16. Ma F, Zhao B, Diao J (2016) Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution. Water Sci Technol 74(6):1335–1345. https://doi.org/10.2166/wst.2016.319

    Article  CAS  PubMed  Google Scholar 

  17. Kumar P, Prajapati AK, Dixit S, Yadav VL (2020) Adsorption of fluoride from aqueous solution using biochar prepared from waste peanut hull. Mater Res Express 6(12):125553. https://doi.org/10.1088/2053-1591/ab6ca0

    Article  CAS  Google Scholar 

  18. Mohan D, Sharma R, Singh VK, Steele P, Pittman CU (2012) Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: equilibrium uptake and sorption dynamics modeling. Ind Eng Chem Res 51(2):900–914. https://doi.org/10.1021/ie202189v

    Article  CAS  Google Scholar 

  19. Mehmood A, Bano S, Fahim A, Parveen R, Khurshid S (2015) Efficient removal of crystal violet and eosin B from aqueous solution using Syzygium cumini leaves: a comparative study of acidic and basic dyes on a single adsorbent. Korean J Chem Eng 32:882–895. https://doi.org/10.1007/s11814-014-0308-8

    Article  CAS  Google Scholar 

  20. Liu L, Huang Y, Zhang S, Gong Y, Su Y, Cao J, Hu H (2019) Adsorption characteristics and mechanism of Pb(II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system. Waste Manage 100:287–295. https://doi.org/10.1016/j.wasman.2019.08.021

    Article  CAS  Google Scholar 

  21. Hamed MM (2014) Sorbent extraction behavior of a nonionic surfactant, triton X-100, onto commercial charcoal from low level radioactive waste. J Radioanal Nucl Chem 302(1):303–313. https://doi.org/10.1007/s10967-014-3250-7

    Article  CAS  Google Scholar 

  22. Kuncham K, Nair S, Duran S, Bose R (2017) Efficient removal of uranium(VI) from aqueous medium using ceria nanocrystals: an adsorption behavioural study. J Radioanal Nucl Chem 313(1):101–112. https://doi.org/10.1007/s10967-017-5279-x

    Article  CAS  Google Scholar 

  23. El-Maghrabi HH, Younes AA, Salem AR, Rabie K, El-shereafy E (2019) Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): preparation, characterization and adsorption optimization. J Hazard Mater 378:120703

    Article  CAS  Google Scholar 

  24. Lei H, Zhou D, Tang J, Hu X, Pan N, Zou H, Chi F, Wang X (2020) Epoxy graphene oxide from a simple photo-Fenton reaction and its hybrid with phytic acid for enhancing U(VI) capture. Sci Total Environ 738:140316

    Article  CAS  Google Scholar 

  25. Guo X, Yang H, Liu Q, Liu J, Chen R, Zhang H, Yu J, Zhang M, Li R, Wang J (2020) A chitosan-graphene oxide/ZIF foam with anti-biofouling ability for uranium recovery from seawater. Chem Eng J 382:122850

    Article  CAS  Google Scholar 

  26. Ho Y-S (2004) Selection of optimum sorption isotherm. Carbon 42(10):2115–2116. https://doi.org/10.1016/j.carbon.2004.03.019

    Article  CAS  Google Scholar 

  27. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  28. Kılıç M, Kırbıyık Ç, Çepelioğullar Ö, Pütün AE (2013) Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Appl Surf Sci 283:856–862. https://doi.org/10.1016/j.apsusc.2013.07.033

    Article  CAS  Google Scholar 

  29. Chang R (2000) Physical chemistry for the chemical and biological sciences, 3rd edn. University Science Books, USA

    Google Scholar 

  30. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  31. Chen T, Da T, Ma Y (2021) Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant. J Mol Liq 322:114980

    Article  CAS  Google Scholar 

  32. Hamed MM, Rizk HE, Ahmed IM (2018) Adsorption behavior of zirconium and molybdenum from nitric acid medium using low-cost adsorbent. J Mol Liq 249:361–370. https://doi.org/10.1016/j.molliq.2017.11.049

    Article  CAS  Google Scholar 

  33. Zhai M, Guo L, Zhang Y, Dong P, Qi G, Huang Y (2016) Kinetic parameters of biomass pyrolysis by TGA. BioResources 11(4):8548–8557

    CAS  Google Scholar 

  34. Uzun BB, Sarioğlu N (2009) Rapid and catalytic pyrolysis of corn stalks. Fuel Process Technol 90:705–716

    Article  CAS  Google Scholar 

  35. Zhao J, Yu L, Ma H, Zhou F, Yang K, Wu G (2020) Corn stalk-based activated carbon synthesized by a novel activation method for high-performance adsorption of hexavalent chromium in aqueous solutions. J Colloid Interface Sci 578:650–659

    Article  CAS  Google Scholar 

  36. Sevilla M, Maciá-Agulló JA, Fuertes AB (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenerg 35(7):3152–3159. https://doi.org/10.1016/j.biombioe.2011.04.032

    Article  CAS  Google Scholar 

  37. Guo S, Dong X, Wu T, Shi F, Zhu C (2015) Characteristic evolution of hydrochar from hydrothermal carbonization of corn stalk. J Anal Appl Pyrolysis 116:1–9

    Article  CAS  Google Scholar 

  38. Guiotoku M, Rambo CR, Hansel FA, Magalhães WLE, Hotza D (2009) Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater Lett 63(30):2707–2709. https://doi.org/10.1016/j.matlet.2009.09.049

    Article  CAS  Google Scholar 

  39. Lee JW, Kidder M, Evans BR, Paik S, Buchanan AC III, Garten CT, Brown RC (2010) Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20):7970–7974. https://doi.org/10.1021/es101337x

    Article  CAS  PubMed  Google Scholar 

  40. Jiang T-Y, Jiang J, Xu R-K, Li Z (2012) Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 89(3):249–256. https://doi.org/10.1016/j.chemosphere.2012.04.028

    Article  CAS  PubMed  Google Scholar 

  41. Yuan J-H, Xu R-K, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol 102(3):3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018

    Article  CAS  Google Scholar 

  42. Ahmed MB, Zhou JL, Ngo HH, Guo W (2016) Insight into biochar properties and its cost analysis. Biomass Bioenerg 84:76–86. https://doi.org/10.1016/j.biombioe.2015.11.002

    Article  CAS  Google Scholar 

  43. Bogusz A, Oleszczuk P, Dobrowolski R (2015) Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresour Technol 196:540–549

    Article  CAS  Google Scholar 

  44. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  CAS  Google Scholar 

  45. Fan S, Sun Y, Yang T, Chen Y, Yan B, Li R, Chen G (2020) Biochar derived from corn stalk and polyethylene co-pyrolysis: characterization and Pb(II) removal potential. RSC Adv 10(11):6362–6376

    Article  CAS  Google Scholar 

  46. Ahmad M, Lee SS, Dou X, Mohan D, Sung J-K, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technol 118:536–544. https://doi.org/10.1016/j.biortech.2012.05.042

    Article  CAS  Google Scholar 

  47. Kim W-K, Shim T, Kim Y-S, Hyun S, Ryu C, Park Y-K, Jung J (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource Technol 138:266–270. https://doi.org/10.1016/j.biortech.2013.03.186

    Article  CAS  Google Scholar 

  48. Guo X, Zhang S, Shan XQ (2008) Adsorption of metal ions on lignin. J Hazard Mater 151:134–142

    Article  CAS  Google Scholar 

  49. Ding ZH, Wu HL, Hu X (2017) Multiple characterization for mechanistic insights of Pb(II) sorption onto biochars derived from herbaceous plant, biosolid, and livestock waste. BioResources 12:6763–6772

    Article  CAS  Google Scholar 

  50. Zhang K, Chen T (2018) Sorption and removal of iodate from aqueous solution using dried duckweed (Landoltia punctata) powder. J Environ Radioactiv 316(2):543–551. https://doi.org/10.1007/s10967-018-5807-3

    Article  CAS  Google Scholar 

  51. Da T, Chen T (2020) Optimization of experimental factors on iodate adsorption: a case study of pomelo peel. J Radioanal Nucl Chem 326(1):511–526. https://doi.org/10.1007/s10967-020-07312-4

    Article  CAS  Google Scholar 

  52. Zou Y, Chen T, Yuan G, Zhang K (2018) Sorption of iodine on Beishan granite: effect of speciation and humic acid. J Radioanal Nucl Chem 317(2):723–730. https://doi.org/10.1007/s10967-018-5945-7

    Article  CAS  Google Scholar 

  53. Yu WB, Xu HF, Tan DY, Fang YH, Roden EE, Wan Q (2020) Adsorption of iodate on nanosized tubular halloysite. Appl Clay Sci. https://doi.org/10.1016/j.clay.2019.105407

    Article  Google Scholar 

  54. Liu P, Chen T, Zheng J (2020) Removal of iodate from aqueous solution using diatomite/nano titanium dioxide composite as adsorbent. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07161-1

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dai JL, Zhang M, Zhu YG (2004) Adsorption and desorption of iodine by various Chinese soils. Environ Int 30(4):525–530. https://doi.org/10.1016/j.envint.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  56. Dai JL, Zhang M, Hu QH, Huang YZ, Wang RQ, Zhu YG (2009) Adsorption and desorption of iodine by various Chinese soils: II iodide and iodate. Geoderma 153(1–2):130–135. https://doi.org/10.1016/j.geoderma.2009.07.020

    Article  CAS  Google Scholar 

  57. Tokunaga K, Takahashi Y, Tanaka K, Kozai N (2021) Effective removal of iodate by coprecipitation with barite: behavior and mechanism. Chemosphere 266:129104. https://doi.org/10.1016/j.chemosphere.2020.129104

    Article  CAS  PubMed  Google Scholar 

  58. Li D, Kaplan DI, Sams A, Powell BA, Knox AS (2018) Removal capacity and chemical speciation of groundwater iodide (I-) and iodate (IO3-) sequestered by organoclays and granular activated carbon. J Environ Radioact 192:505–512. https://doi.org/10.1016/j.jenvrad.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  59. Szczepaniak W, Kościelna H (2002) Specific adsorption of halogen anions on hydrous γ-Al2O3. Anal Chim Acta 470(2):263–276. https://doi.org/10.1016/s0003-2670(02)00661-x

    Article  CAS  Google Scholar 

  60. Sangsoo H, Wooyong U, Won-Seok K (2019) Development of bismuth-functionalized graphene oxide to remove radioactive iodine. Dalton Trans 48(2):478–485. https://doi.org/10.1039/c8dt03745k

    Article  CAS  Google Scholar 

  61. Li D, Kaplan DI, Price KA (2019) Iodine immobilization by silver-impregnated granular activated carbon in cementitious systems. J Environ Radioact 208–209:106017

    Article  Google Scholar 

  62. Wang GH, Qafoku NP, Szecsody JE, Strickland CE, Brown CF, Freedman VL (2019) Time-dependent iodate and iodide adsorption to Fe oxides. ACS Earth Space Chem 3(11):2415–2420. https://doi.org/10.1021/acsearthspacechem.9b00145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Major National Science and Technology Specific Project of Large Advanced Pressurized Water Reactor Nuclear Power Plant (2019ZX06004009), National Natural Science Foundation of China (U1967212) and the Fundamental Research Funds for the Central Universities (2018ZD10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, TX., Chen, T., He, WK. et al. Comprehensive comparisons of iodate adsorption onto corn stalk hydrothermal and pyrolytic biochar. J Radioanal Nucl Chem 329, 1277–1290 (2021). https://doi.org/10.1007/s10967-021-07874-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07874-x

Keywords

Navigation