Skip to main content
Log in

Possibilities and analytical aspects of the PIGE method for the study of B4C

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

PIGE was used for isotopes determination in B4C. The distribution profiles of boron and carbon are determined. Boron isotope distribution was studied using nuclear reactions 10B(p,αγ)7Be and 11B(p,γ)12C, while in the best depth resolution was about 400 Å. When studying the istribution of carbon used nuclear reactions 12C(p,γ)13N and 13C(p,γ)14N with the best resolution equal to 470 Å. Such possibilities PIGE used for development process CVD and produce of boron carbide with need characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4

Similar content being viewed by others

References

  1. Bokuchava GV, Karumidze GC, Korzh AF, Shirokov BM (2008) Termoelectricheskie svostva karbida bora, poluchennogo rasnymi metodami (in Rassian). Aviatcionnaya kosmicheskaya technika i technolodiya 2(49):60–64

    Google Scholar 

  2. Albert B, Werheit H, Jung W, Hofmann K (2006) Boron, borides, and related compounds: proceedings of the 15th international symposium on boron, borides, and related compounds (ISBB 05). J Solid State Chem 179(9):2746

    Article  CAS  Google Scholar 

  3. Nishi Y, Arita Y, Matsui T, Nagasaki T (2002) Isotope effects on thermal conductivity of boron carbide. J Nucl Sci Technol 39:391–394

    Article  CAS  Google Scholar 

  4. Takasaki I, Nagumo T, Inaba T, Yoshino N, Maruyama T (2012) Measurement of the isotopic abundance of boron-10 by inductively coupled plasma-quadrupole mass spectrometry. J Nucl Sci Technol 49:867–872

    Article  CAS  Google Scholar 

  5. Patelli A, Rigato V, Salmaso G, Carvalho NJM, De Hosson JTM, Bontempi E, Depero LE (2006) Ion bombardment effects on nucleation of sputtered Mo nano-crystas in Mo/B4C/Si multilayers. Surf Coat Technol 201:143

    Article  CAS  Google Scholar 

  6. Kapustin VL, Semenov NA, Khovansky NA, Shirokov BM (2004) Obtaining of boron carbide by hydrogen reduction of three-chloride boron in toluene vapors. PAST Ser Nucl Phys Investig 1:105–107

    Google Scholar 

  7. Bondarenko V, Glazunov L, Goncharov O, Zats A, Kuzmenko V, Levenets V, Omelnik O, Pistryak V, Suphostavets V, Stchur O, Usikov N (2006) Analytical nuclear physical complex SOKOL. Current problems in nuclear physics and atomic energy. Kyiv Proc 7 p: 852–857

  8. Acharya R, Raja SW, Chhillar S, Gupta J, Sonber JK, Ch Murthy TSR, SasiBhushan K, Rao Radhika M, Majumdar S, Pujari PK (2018) Non-destructive quantification of total boron and its isotopic composition in boron based refractory materials by PIGE and inter-comparison study using TIMS and titrimetry. J Anal At Spectrom 33:784–791

    Article  CAS  Google Scholar 

  9. Zeps VJ, Adelberger EG, Garcia A et al (1995) Parity mixing of the 0+-0- I=1 doublet in N-14. Phys Rev C51:1494–1520

    Google Scholar 

  10. Kopecky J, Sublet JC, Simpson JA, Forrest RA, Nierop D (2010) Atlas of neutron capture cross sections. NGAtlas/ZV (iaea.org)

  11. https://www.nuclear-power.net/nuclear-power-plant/controlrods/

  12. Wood C, Emin D, Gray PE (1985) Thermal conductivity of boron carbides. Phys Rev B31:6811–6817

    Article  Google Scholar 

  13. Jon-L I, Portehault D, Gouget G, Maruyama S, Ohkubo I, Mori T (2017) Thermoelectric properties of boron carbide/HfB2 composites. Mater Renew Sustain Energy 6:6

    Article  Google Scholar 

  14. Mestvirishvili Z, Bairamashvili I, Kvatchadze V, Rekhviashvili N (2015) Thermal and mechanical properties of B4C–ZrB2 ceramic composite. J Mater Sci Eng B 5:385–393

    CAS  Google Scholar 

  15. Nagamatsu J, Nakagama N, Muragama T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in MgB2. Nature 410:63–69

    Article  CAS  Google Scholar 

  16. http://www.nist.gov/

  17. http://www.iaea.or.at/

  18. Silvester B, Lin S-H, Feldman BJ (1995) Doping vs alloying in amorphous hydrogenated boron carbide. Solid State Commun 1995:969–971

    Article  Google Scholar 

  19. Elvert M, Suess E, Greinert J, Whiticar MJ (2000) Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Org Geochem 31:1175–1187

    Article  CAS  Google Scholar 

  20. Claypool GE, Threlkeld CN, Mankiewicz PN, Arhtur MA, Anderson TF (1995) Isotopic composition of interstitial fluids and origin of metane in slope sediment of the middle America trench, deep sea drilling project LEG 84. Initial reports of the deep sea drilling project. 84:683–691

  21. Amsel G, Lanford WA (1984) Nuclear reaction techniques in materials analysis. Annu Rev Nucl Part Sci 34:435–460

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Levenets.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levenets, V., Omelnyk, O., Shchur, A. et al. Possibilities and analytical aspects of the PIGE method for the study of B4C. J Radioanal Nucl Chem 329, 1183–1189 (2021). https://doi.org/10.1007/s10967-021-07873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07873-y

Keywords

Navigation