Skip to main content
Log in

Effect of natural pyrite oxidation on the U(VI) adsorption under the acidic and neutral conditions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The U(VI) immobilization efficiency and mechanism of natural pyrite were investigated under both acidic and neutral oxidization conditions. The results show that, the final U(VI) removal rate was only 20% under acidic condition; however, a small amount of pyrite oxidation could enhance the immobilization of U(VI) under neutral oxidizing conditions, with the removal rate reaching 95%. A ferric hydroxide colloid, goethite and lepidocrocite were formed in the neutral oxidizing environment. It was speculated that the main U(VI) immobilization mechanisms of pyrite oxidation were adsorption. The adsorption behaviour of U(VI) to pyrite conformed to the pseudo second-order adsorption model (R2 = 0.9996).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li M, Gao FY, Zhang XW, Lv SY, Huang J, Wu XY, Fang Q (2020) Recovery of uranium from low-grade tailings by electro-assisted leaching. J Cleaner Prod. https://doi.org/10.1016/j.jclepro.2020.122639

    Article  Google Scholar 

  2. Sihn Y, Bae S, Lee W (2019) Immobilization of uranium(VI) in a cementitious matrix with nanoscale zerovalent iron (NZVI). Chemosphere 215:626–633. https://doi.org/10.1016/j.chemosphere.2018.10.073

    Article  CAS  PubMed  Google Scholar 

  3. Song S, Wang K, Zhang YH, Wang YK, Zhang CL, Wang X, Zhang R, Chen JR, Wen T, Wang XK (2019) Self-assembly of graphene oxide/PEDOT:PSS nanocomposite as a novel adsorbent for uranium immobilization from wastewater. Environ Pollut 250:196–205. https://doi.org/10.1016/j.envpol.2019.04.020

    Article  CAS  PubMed  Google Scholar 

  4. Li M, Huang CM, Zhang XW, Gao FY, Wu XY, Fang Q, Tan WF, Zhang D (2018) Extraction mechanism of depleted uranium exposure by dilute alkali pretreatment combined with acid leaching. Hydrometallurgy 180:201–209. https://doi.org/10.1016/j.hydromet.2018.07.021

    Article  CAS  Google Scholar 

  5. Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46. https://doi.org/10.1016/j.jenvrad.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  6. Zhou Z, Yang Z, Sun Z, Liu Y, Chen G, Liao Q, Xu L, Wang X, Li J, Zhou Y (2019) Enhanced uranium bioleaching high-fluorine and low-sulfur uranium ore by a mesophilic acidophilic bacterial consortium with pyrite. J Radioanal Nucl Chem 321(2):711–722. https://doi.org/10.1007/s10967-019-06608-4

    Article  CAS  Google Scholar 

  7. Lu BQ, Li M, Zhang XW, Huang CM, Wu XY, Fang Q (2018) Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach. J Hazard Mater 343:255–265. https://doi.org/10.1016/j.jhazmat.2017.09.037

    Article  CAS  PubMed  Google Scholar 

  8. Song Y, Wei GY, Kopeć M, Rao LF, Zhang Z, Gottlieb E, Wang ZY, Yuan R, Ye G, Wang JC, Kowalewski T, Matyjaszewski K (2018) Copolymer-templated synthesis of nitrogen-doped mesoporous carbons for enhanced adsorption of hexavalent chromium and uranium. ACS Appl Nano Mater 1(6):2536–2543. https://doi.org/10.1021/acsanm.8b00103

    Article  CAS  Google Scholar 

  9. Kong LJ, Zhu YT, Wang M, Li ZX, Tan ZC, Xu RB, Tang HM, Chang XY, Xiong Y, Chen DY (2016) Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe–SC. J Hazard Mater 320:435–441. https://doi.org/10.1016/j.jhazmat.2016.08.060

    Article  CAS  PubMed  Google Scholar 

  10. Li ZJ, Huang ZW, Guo WL, Wang L, Zheng LR, Chai ZF, Shi WQ (2017) Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ Sci Technol 51(10):5666–5674. https://doi.org/10.1021/acs.est.6b05313

    Article  CAS  PubMed  Google Scholar 

  11. Xie Y, Chen CL, Ren XM, Wang XX, Wang HY, Wang XK (2019) Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog Mater Sci 103:180–234. https://doi.org/10.1016/j.pmatsci.2019.01.005

    Article  CAS  Google Scholar 

  12. Ge Y, He Z, Wu J, Wang G, Xie S, Liu J (2020) Manganese ferrite/porous graphite carbon nitride composites for U(VI) adsorption from aqueous solutions. J Radioanal Nucl Chem 326(1):157–171. https://doi.org/10.1007/s10967-020-07281-8

    Article  CAS  Google Scholar 

  13. Lee J-Y, Oh JY, Putri KY, Baik MH, Yun J-I (2017) Redox behaviors of Fe(II/III) and U(IV/VI) studied in synthetic water and KURT groundwater by potentiometry and spectroscopy. J Radioanal Nucl Chem 312(2):221–231. https://doi.org/10.1007/s10967-017-5233-y

    Article  CAS  Google Scholar 

  14. Pidchenko I, Salminen-Paatero S, Rothe J, Suksi J (2013) Study of uranium oxidation states in geological material. J Environ Radioact 124:141–146. https://doi.org/10.1016/j.jenvrad.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  15. Chen P, Ma Y, Kang ML, Shang CM, Song Y, Xu FQ, Wang J, Song G, Yang YQ (2020) The redox behavior of uranium on Beishan granite: effect of Fe2+ and Fe3+ content. J Environ Radioact 217:106208. https://doi.org/10.1016/j.jenvrad.2020.106208

    Article  CAS  PubMed  Google Scholar 

  16. Abd El-Magied MO, Manaa E-SA, Youssef MAM, Kouraim MN, Dhmees AS, Eldesouky EM (2021) Uranium removal from aqueous medium using Co0.5Mn0.5Fe2O4 nanoparticles. J Radioanal Nucl Chem 327(2):745–753. https://doi.org/10.1007/s10967-020-07571-1

    Article  CAS  Google Scholar 

  17. Bi Y, Hayes KF (2014) Nano-FeS inhibits UO2 reoxidation under varied oxic conditions. Environ Sci Technol 48(1):632–640. https://doi.org/10.1021/es4043353

    Article  CAS  PubMed  Google Scholar 

  18. Duan J, Ji H, Zhao X, Tian S, Liu X, Liu W, Zhao D (2020) Immobilization of U(VI) by stabilized iron sulfide nanoparticles: water chemistry effects, mechanisms, and long-term stability. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124692

    Article  Google Scholar 

  19. Spycher NF, Issarangkun M, Stewart BD, Sevinç Şengör S, Belding E, Ginn TR, Peyton BM, Sani RK (2011) Biogenic uraninite precipitation and its reoxidation by iron(III) (hydr)oxides: a reaction modeling approach. Geochim Cosmochim Acta 75(16):4426–4440. https://doi.org/10.1016/j.gca.2011.05.008

    Article  CAS  Google Scholar 

  20. Wu WM, Carley J, Luo J, Ginder-vogel MA (2007) In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ Sci Technol 41:5716–5723. https://doi.org/10.1021/es062657b

    Article  CAS  PubMed  Google Scholar 

  21. Stewart BD, Girardot C, Spycher N, Sani RK, Peyton BM (2013) Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) (Hydr)oxides. Environ Sci Technol 47(1):364–371. https://doi.org/10.1021/es303022p

    Article  CAS  PubMed  Google Scholar 

  22. Luo M, Liu S, Li J, Luo F, Lin H, Yao P (2015) Uranium sorption characteristics onto synthesized pyrite. J Radioanal Nucl Chem 307(1):305–312. https://doi.org/10.1007/s10967-015-4269-0

    Article  CAS  Google Scholar 

  23. Naveau A, Monteil-Rivera F, Guillon E, Dumonceau J (2007) Interactions of aqueous selenium (-II) and (IV) with metallic sulfide surfaces. Environ Sci Technol 41:5376–5382

    Article  CAS  Google Scholar 

  24. Bower J, Savage KS, Weinman B, Barnett MO, Hamilton WP, Harper WF (2008) Immobilization of mercury by pyrite (FeS2). Environ Pollut 156(2):504–514. https://doi.org/10.1016/j.envpol.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  25. Gong YY, Liu YY, Xiong Z, Zhao DY (2014) Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry. Environ Sci Technol 48(7):3986–3994. https://doi.org/10.1021/es404418a

    Article  CAS  PubMed  Google Scholar 

  26. Huo LJ, Xie WB, Qian TW, Guan XH, Zhao DY (2017) Reductive immobilization of pertechnetate in soil and groundwater using synthetic pyrite nanoparticles. Chemosphere 174:456–465. https://doi.org/10.1016/j.chemosphere.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  27. Kang ML, Chen FR, Wu SJ, Yang YQ, Bruggeman C, Charlet L (2011) Effect of pH on aqueous Se(IV) reduction by pyrite. Environ Sci Technol 45(7):2704–2710. https://doi.org/10.1021/es1033553

    Article  CAS  PubMed  Google Scholar 

  28. Veeramani H, Scheinost AC, Monsegue N, Qafoku NP, Kukkadapu R, Newville M, Lanzirotti A, Pruden A, Murayama M, Hochella MF Jr (2013) Abiotic reductive immobilization of U(VI) by biogenic mackinawite. Environ Sci Technol 47(5):2361–2369. https://doi.org/10.1021/es304025x

    Article  CAS  PubMed  Google Scholar 

  29. Weisener C, Gerson A (2000) Cu(II) adsorption mechanism on pyrite: an XAFS and XPS study. Surf Interface Anal 30:454–458

    Article  CAS  Google Scholar 

  30. Liu H, Zhu Y, Xu B, Li P, Sun Y, Chen T (2017) Mechanical investigation of U(VI) on pyrrhotite by batch, EXAFS and modeling techniques. J Hazard Mater 322(Pt B):488–498. https://doi.org/10.1016/j.jhazmat.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  31. Bruggeman C, Maes N (2010) Uptake of uranium(VI) by pyrite under boom clay conditions: influence of dissolved organic carbon. Environ Sci Technol 44:4210–4216

    Article  CAS  Google Scholar 

  32. Descostes M, Schlegel ML, Eglizaud N, Descamps F, Miserque F, Simoni E (2010) Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochim Cosmochim Acta 74(5):1551–1562. https://doi.org/10.1016/j.gca.2009.12.004

    Article  CAS  Google Scholar 

  33. Yang ZW, Kang ML, Ma B, Xie JL, Chen FR, Charlet L, Liu CL (2014) Inhibition of U(VI) reduction by synthetic and natural pyrite. Environ Sci Technol 48(18):10716–10724. https://doi.org/10.1021/es502181x

    Article  CAS  PubMed  Google Scholar 

  34. Ma B, Fernandez-Martinez A, Kang ML, Wang KF, Lewis AR, Maffeis TGG, Findling N, Salas-Colera E, Tisserand D, Bureau S, Charlet L (2020) Influence of surface compositions on the reactivity of pyrite toward aqueous U(VI). Environ Sci Technol 54(13):8104–8114. https://doi.org/10.1021/acs.est.0c01854

    Article  CAS  PubMed  Google Scholar 

  35. Eglizaud N, Miserque F, Simoni E, Schlegel M, Descostes M (2006) Uranium(VI) interaction with pyrite (FeS2): chemical and spectroscopic studies. Radiochim Acta 94:651–656. https://doi.org/10.1524/ract.2006.94.9-11.651

    Article  CAS  Google Scholar 

  36. Scott TB, Riba Tort O, Allen GC (2007) Aqueous uptake of uranium onto pyrite surfaces; reactivity of fresh versus weathered material. Geochim Cosmochim Acta 71(21):5044–5053. https://doi.org/10.1016/j.gca.2007.08.017

    Article  CAS  Google Scholar 

  37. Qafoku NP, Kukkadapu RK, McKinley JP, Arey BW, Kelly SD, Wang CM, Resch CT, Long PE (2009) Uranium in framboidal pyrite from a naturally bioreduced alluvial sediment. Environ Sci Technol 43:8528–8534. https://doi.org/10.1021/es9017333

    Article  CAS  PubMed  Google Scholar 

  38. Qiu GH, Luo Y, Chen C, Lv Q, Tan WF, Liu F, Liu CS (2016) Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems. J Environ Sci 45:164–176. https://doi.org/10.1016/j.jes.2016.01.012

    Article  CAS  Google Scholar 

  39. Sit PHL, Cohen MH, Selloni A (2012) Interaction of oxygen and water with the (100) surface of pyrite: mechanism of sulfur oxidation. J Phys Chem Lett 3(17):2409–2414. https://doi.org/10.1021/jz300996c

    Article  CAS  PubMed  Google Scholar 

  40. Das DK, Pathak PN, Kumar S, Manchanda VK (2009) Sorption behavior of Am3+ on suspended pyrite. J Radioanal Nucl Chem 281(3):449–455. https://doi.org/10.1007/s10967-009-0030-x

    Article  CAS  Google Scholar 

  41. Niida K, Saito T, Tanaka S (2013) Comparison of uranyl adsorption on Iron(III) oxyhydroxide colloids. Chem Lett 42(11):1380–1382. https://doi.org/10.1246/cl.130589

    Article  CAS  Google Scholar 

  42. Duff MC, Coughlin JU, Hunter DB (2002) Uranium co-precipitation with iron oxide minerals. Geochim Cosmochim Acta 66:3433–3547. https://doi.org/10.1016/S0016-7037(02)00953-5

    Article  Google Scholar 

  43. Doornbusch B, Bunney K, Gan BK, Jones F, Gräfe M (2015) Iron oxide formation from FeCl2 solutions in the presence of uranyl (UO22+) cations and carbonate rich media. Geochim Cosmochim Acta 158:22–47. https://doi.org/10.1016/j.gca.2015.02.038

    Article  CAS  Google Scholar 

  44. Li ZJ, Wang L, Yuan LY, Xiao CL, Mei L, Zheng LR, Zhang J, Yang JH, Zhao YL, Zhu ZT, Chai ZF, Shi WQ (2015) Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. J Hazard Mater 290:26–33. https://doi.org/10.1016/j.jhazmat.2015.02.028

    Article  CAS  PubMed  Google Scholar 

  45. Mei HY, Tan XL, Tan LQ, Meng YD, Chen CL, Fang M, Wang XK (2018) Retention of U(VI) by the formation of Fe precipitates from oxidation of Fe(II). ACS Earth Space Chem 2(10):968–976. https://doi.org/10.1021/acsearthspacechem.8b00055

    Article  CAS  Google Scholar 

  46. Oliveira CM, Machado CM, Duarte GW, Peterson M (2016) Beneficiation of pyrite from coal mining. J Cleaner Prod 139:821–827. https://doi.org/10.1016/j.jclepro.2016.08.124

    Article  CAS  Google Scholar 

  47. Salavati-Niasari M, Fereshteh Z, Davar F (2009) Synthesis of cobalt nanoparticles from [bis(2-hydroxyacetophenato)cobalt(II)] by thermal decomposition. Polyhedron 28(6):1065–1068. https://doi.org/10.1016/j.poly.2009.01.012

    Article  CAS  Google Scholar 

  48. Wan SL, Ma MH, Lv L, Qian LP, Xu SY, Xue Y, Ma ZZ (2014) Selective capture of thallium(I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chem Eng J 239:200–206. https://doi.org/10.1016/j.cej.2013.11.010

    Article  CAS  Google Scholar 

  49. Zhang GS, Qu JH, Liu HJ, Liu RP, Li GT (2007) Removal mechanism of As(III) by a novel Fe−Mn binary oxide adsorbent: oxidation and sorption. Environ Sci Technol 41:4613–4619. https://doi.org/10.1021/es063010u

    Article  CAS  PubMed  Google Scholar 

  50. Fathinia S, Fathinia M, Rahmani AA, Khataee A (2015) Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process. Appl Surf Sci 327:190–200. https://doi.org/10.1016/j.apsusc.2014.11.157

    Article  CAS  Google Scholar 

  51. Xie YP, Fang Q, Li M, Wang SN, Luo YF, Wu XY, Lv JW, Tan WF, Wang HQ, Tan KX (2020) Low concentration of Fe(II) to enhance the precipitation of U(VI) under neutral oxygen-rich conditions. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134827

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang T, Qian TW, Huo LJ, Li YF, Zhao DY (2019) Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles. Environ Pollut 255(Pt 1):112992. https://doi.org/10.1016/j.envpol.2019.112992

    Article  CAS  PubMed  Google Scholar 

  53. Zhang ZB, Liu J, Cao XH, Hua R, Liu Y, Yu XF, He LK, Liu YH (2015) Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)-CO3/Ca-U(VI)-CO3 complexes. J Hazard Mater 300:633–642. https://doi.org/10.1016/j.jhazmat.2015.07.058

    Article  CAS  PubMed  Google Scholar 

  54. Ilton ES, Bagus PS (2011) XPS determination of uranium oxidation states. Surf Interface Anal 43(13):1549–1560. https://doi.org/10.1002/sia.3836

    Article  CAS  Google Scholar 

  55. Regenspurg S, Schild D, Schäfer T, Huber F, Malmström ME (2009) Removal of uranium(VI) from the aqueous phase by iron(II) minerals in presence of bicarbonate. Appl Geochem 24(9):1617–1625. https://doi.org/10.1016/j.apgeochem.2009.04.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11705082, 51874180 and 51704169), Natural Science Foundation of Hunan Province (2018JJ3434) as well as the double first class construct program of USC (2017SYL05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Fang, Q., Yan, R. et al. Effect of natural pyrite oxidation on the U(VI) adsorption under the acidic and neutral conditions. J Radioanal Nucl Chem 329, 839–848 (2021). https://doi.org/10.1007/s10967-021-07857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07857-y

Keywords

Navigation