Skip to main content
Log in

Radon mapping in groundwater and indoor environs of Budgam, Jammu and Kashmir

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radiation exposure, an inescapable share of our everyday life, primarily arises from terrestrial or cosmic sources. A small fragment of the total dose is also contributed by our own bodies. Humans receive an average radiation of 2.4 mSv y−1 as natural background radiation. In the present study, an attempt to quantify groundwater radon-222 and indoor radon, thoron and their progeny was made using both active as well as passive techniques. Solid state nuclear track detectors (LR-115 type-II films) were employed for long-term passive measurements while as scintillation based radon monitor was used for active short-term measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UNSCEAR (2000) Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Rep to Gen Assem

  2. WHO (2009) WHO Handbook on Indoor Radon

  3. Nazaroff WW, Moed BA, Sextro RG (1988) Soil as a Source of Indoor Radon, Generation, Migration, and Entry. In: Radon and its decay products in indoor W.W. Nazaroff, A.V. Nero Jr.

  4. Tanner AB (1978) Natural radiation. In: Radiation and health. Taylor & Francis, Abingdon, UK

  5. Nazaroff WW (1992) Radon transport from soil to air. Rev. Geophys. https://doi.org/10.1029/92RG00055

  6. Prasad G, Prasad Y, Gusain GS, Ramola RC (2008) Measurement of radon and thoron levels in soil, water and indoor atmosphere of Budhakedar in Garhwal Himalaya. Radiat Meas, India. https://doi.org/10.1016/j.radmeas.2008.04.050

    Book  Google Scholar 

  7. Brahmanandhan GM, Selvasekarapandian S, Malathi J et al (2008) Seasonal variation of indoor gamma dose and radon, thoron measurement in the dwellings around kudankulam nuclear power plant (Radhapuram Taluk, Tirunelveli District). Indoor Built Environ 17:384–389. https://doi.org/10.1177/1420326X08094817

    Article  Google Scholar 

  8. Axelsson G, Andersson EM, Barregard L (2015) Lung cancer risk from radon exposure in dwellings in Sweden: how many cases can be prevented if radon levels are lowered? Cancer Causes Control. https://doi.org/10.1007/s10552-015-0531-6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Darby S, Hill D, Auvinen A et al (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 330:223. https://doi.org/10.1136/bmj.38308.477650.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krewski D, Lubin JH, Zielinski JM et al (2006) A combined analysis of north American case-control studies of residential radon and lung cancer. J Toxicol Environ Heal - Part A. https://doi.org/10.1080/15287390500260945

    Article  Google Scholar 

  11. Matiullah MW (2017) Measurement of radon concentration levels in Pakistan: an overview. Indoor Built Environ 26:1319–1334. https://doi.org/10.1177/1420326X16645849

    Article  CAS  Google Scholar 

  12. Ponciano-Rodríguez G, Gaso MI, Armienta MA et al (2020) Indoor radon exposure and excess of lung cancer mortality: the case of Mexico—an ecological study. Environ Geochem Health. https://doi.org/10.1007/s10653-020-00662-8

    Article  PubMed  Google Scholar 

  13. Samet JM, Avila-Tang E, Boffetta P et al (2009) Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res 15:5626–5645. https://doi.org/10.1158/1078-0432.CCR-09-0376

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shang B, Chen B, Gao Y et al (2005) Thoron levels in traditional Chinese residential dwellings. Radiat Environ Biophys 44:193–199. https://doi.org/10.1007/s00411-005-0020-5

    Article  CAS  PubMed  Google Scholar 

  15. Brudecki K, Li WB, Meisenberg O et al (2014) Age-dependent inhalation doses to members of the public from indoor short-lived radon progeny. Radiat Environ Biophys. https://doi.org/10.1007/s00411-014-0543-8

    Article  PubMed  Google Scholar 

  16. Meisenberg O, Tschiersch J (2011) Thoron in indoor air: modeling for a better exposure estimate. Indoor Air. https://doi.org/10.1111/j.1600-0668.2010.00697.x

    Article  PubMed  Google Scholar 

  17. Tokonami S (2010) Why is 220Rn (thoron) measurement important? Radiation. Prot. Dosimetry. 141(4): 335–339. https://doi.org/10.1093/rpd/ncq246

  18. Otton, J. K. (1992). The geology of radon. Washington: Government Printing Office.

  19. Saad AF, Al-Awami HH, Hussein NA (2014) Radon exhalation from building materials used in Libya. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2014.03.030

    Article  Google Scholar 

  20. Kumar M, Kaushal A, Sarin A et al (2018) Radon/thoron and progeny levels in dwellings: regional variations and effect of dwelling characteristics—A case study in Jalandhar district of Punjab, India. Indoor Built Environ 27:706–714. https://doi.org/10.1177/1420326X16687614

    Article  CAS  Google Scholar 

  21. Thabayneh KM (2015) Measurement of 222 Rn concentration levels in drinking water and the associated health effects in the Southern part of West bank—Palestine. Appl Radiat Isot 103:48–53. https://doi.org/10.1016/j.apradiso.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  22. Omori Y, Tokonami S, Ishikawa T et al (2015) A pilot study for dose evaluation in high-level natural radiation areas of Yangjiang, China. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-015-4286-z

    Article  Google Scholar 

  23. Al Zabadi H, Mallah K, Saffarini G (2015) Indoor exposure assessment of radon in the elementary schools, Palestine. Int J Radiat Res 13:221–228

    Google Scholar 

  24. Kollerud R, Blaasaas K, Ganerød G et al (2013) Prediction of indoor radon concentrations in dwellings in the Oslo region—a model based on geographical information systems. Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhessd-1-3045-2013

  25. Bochicchio F, Campos-Venuti G, Piermattei S, et al (2005) Annual average and seasonal variations of residential radon concentration for all the Italian Regions. In: Radiation Measurements

  26. Wilkening M, Wicke A (1986) Seasonal variation of indoor RN at a location in the southwestern United States. Health Phys. https://doi.org/10.1097/00004032-198610000-00002

    Article  PubMed  Google Scholar 

  27. Rani S, Kansal S, Singla AK et al (2021) Radiological risk assessment to the public due to the presence of radon in water ofBarnala district. India. Environ Geochem Health, Punjab. https://doi.org/10.1007/s10653-021-01012-y

    Book  Google Scholar 

  28. Kumar M, Sharma N, Sarin A (2018) Prediction of indoor radon/thoron concentration in a model room from exhalation rates ofbuilding materials for different ventilation rates. Acta Geophys. 66:1249–1255. https://doi.org/10.1007/s11600-018-0159-5

    Article  Google Scholar 

  29. Nazir S, Simnani S, Mishra R et al (2020) Simultaneous measurements of radon, thoron and their progeny for inhalation dose assessment in indoors of Srinagar, J&K, India. J Radioanal Nucl Chem 325:315–328. https://doi.org/10.1007/s10967-020-07233-2

    Article  CAS  Google Scholar 

  30. Nazir S, Simnani S, Sahoo BK et al (2020) Dose estimation of radioactivity in groundwater of Srinagar City, Northwest Himalaya, employing fluorimetric and scintillation techniques. Environ Geochem Health. https://doi.org/10.1007/s10653-020-00576-5

    Article  PubMed  Google Scholar 

  31. Nazir S et al (2020) Continuous radon measurements at high altitude physics observatory, Gulmarg, Kashmir valley, J&K, 4. https://doi.org/10.17632/vdzpw2hsbb.4

  32. Qurieshi MA, Masoodi MA, Kadla SA, et al (2011) Gastric cancer in Kashmir

  33. Qurieshi MA, Khan SMS, Masoodi MA et al (2016) Epidemiology of cancers in Kashmir, India: an analysis of hospital data. Adv Prev Med 2016:1–6. https://doi.org/10.1155/2016/1896761

    Article  Google Scholar 

  34. Sahoo BK, Sapra BK, Kanse SD et al (2013) A new pin-hole discriminated 222Rn/220Rn passive measurement device with single entry face. Radiat Meas. https://doi.org/10.1016/j.radmeas.2013.08.003

    Article  Google Scholar 

  35. Prasad G, Prasad Y, Gusain GS, Ramola RC (2008) Measurement of radon and thoron levels in soil, water and indoor atmosphere of Budhakedar in Garhwal Himalaya, India. Radiat Meas 43:S375–S379. https://doi.org/10.1016/j.radmeas.2008.04.050

    Article  CAS  Google Scholar 

  36. Kumar S, Siingh D, Singh RP, Singh AK (2016) The influence of meteorological parameters and atmospheric pollutants on lightning, rainfall, and normalized difference vegetation index in the Indo-Gangetic Plain. Int J Remote Sens. https://doi.org/10.1080/01431161.2015.1117680

    Article  Google Scholar 

  37. Kumar A, Vij R, Sharma S, Sarin A (2020) Seasonal variation of indoor radon/thoron and their progeny levels in lesser-Himalayas of Jammu & Kashmir, India. J Radioanal Nucl Chem 323:495–506. https://doi.org/10.1007/s10967-019-06935-6

    Article  CAS  Google Scholar 

  38. Singla AK, Kansal S, Mehra R (2021) Dose distribution to individual tissues and organs due to exposure of alpha energies fromradon and thoron to local population of Hanumangarh. Rajasthan. India. J Radioanal Nucl Chem 327:1073–1085

    Article  CAS  Google Scholar 

  39. Ramola RC, Prasad M, Kandari T et al (2016) Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment. Sci Rep 6:31061. https://doi.org/10.1038/srep31061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gaware JJ, Sahoo BK, Sapra BK et al (2011) Indigenous development and networking of online radon monitors in the underground uranium mine. Radiat Prot Environ 34:37

    Google Scholar 

  41. Nazir S, Simnani S, Sahoo BK et al (2020) Monitoring geothermal springs and groundwater of Pir Panjal, Jammu and Kashmir, for radon contamination. J Radioanal Nucl Chem 326:1915–1923. https://doi.org/10.1007/s10967-020-07451-8

    Article  CAS  Google Scholar 

  42. Kumar M, Kaushal A, Sahoo BK et al (2019) Measurement of uranium and radon concentration in drinking water samples and assessment of ingestion dose to local population in Jalandhar district of Punjab, India. Indoor Built Environ 28:611–618. https://doi.org/10.1177/1420326X17703773

    Article  CAS  Google Scholar 

  43. Mishra R, Mayya YS, Kushwaha HS (2009) Measurement of 220Rn/222Rn progeny deposition velocities on surfaces and their comparison with theoretical models. J Aerosol Sci. https://doi.org/10.1016/j.jaerosci.2008.08.001

    Article  Google Scholar 

  44. Mishra R, Mayya YS (2008) Study of a deposition-based direct thoron progeny sensor (DTPS) technique for estimating equilibrium equivalent thoron concentration (EETC) in indoor environment. Radiat Meas 43:1408–1416. https://doi.org/10.1016/j.radmeas.2008.03.002

    Article  CAS  Google Scholar 

  45. Mishra R, Prajith R, Sapra BK, Mayya YS (2010) Response of direct thoron progeny sensors (DTPS) to various aerosol concentrations and ventilation rates. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 268:671–675. https://doi.org/10.1016/j.nimb.2009.12.012

    Article  CAS  Google Scholar 

  46. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates

    Google Scholar 

  47. Dar RA, Rashid I, Romshoo SA, Marazi A (2014) Sustainability of winter tourism in a changing climate over Kashmir Himalaya. Environ Monit Assess. https://doi.org/10.1007/s10661-013-3559-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the residents of Budgam for their kind cooperation and trust. The authors express gratitude to the editor and the reviewers for their comments on the earlier version of the manuscript that greatly improved the structure and content of this manuscript. A sincere thank you to Rumisa Amin for her diligent proofreading of this manuscript.

Funding

This work was partially supported by the Department of Atomic Energy (DAE), Board of Research in Nuclear Sciences (BRNS), Trombay, Mumbai, India [grant number: 36(4)/14/48/2015-BRNS].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakeel Simnani.

Ethics declarations

Conflict of interest

The author declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, S., Sahoo, B.K., Rani, S. et al. Radon mapping in groundwater and indoor environs of Budgam, Jammu and Kashmir. J Radioanal Nucl Chem 329, 923–934 (2021). https://doi.org/10.1007/s10967-021-07856-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07856-z

Keywords

Navigation