Skip to main content
Log in

Enhanced uranium extraction from aqueous solution using hollow ZIF-8

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Recently, highly porous metal–organic frameworks (MOFs), with excellent porosity and abundant functional groups, have represented a new addition to the area of capturing uranium ion pollutants. To achieve high adsorption capacity and removal efficiency of uranium, it is significant to modify the morphology of MOF-based adsorbents. In this contribution, two hollow structured ZIF-8 adsorbents were used for the adsorptive separation of uranium from aqueous solution. Both of them showed faster adsorption rate and larger adsorption capacity than pristine ZIF-8, providing the prospect of hollow MOF materials to the application of uranium extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yuan YH, Liu TT, Xiao JX, Yu QH, Feng LJ, Niu BY, Feng SW, Zhang JC, Wang N (2020) DNA nano-pocket for ultra-selective uranyl extraction from seawater. Nat Commun 11(1):5708. https://doi.org/10.1038/s41467-020-19419-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmad M, Yang K, Li LX, Fan YH, Shah T, Zhang QY, Zhang BL (2020) Modified tubular carbon nanofibers for adsorption of uranium(VI) from water. ACS Appl Nano Mater 3(7):6394–6405. https://doi.org/10.1021/acsanm.0c00837

    Article  CAS  Google Scholar 

  3. Zhao R, Shi XY, Ma TT, Rong HZ, Wang ZY, Cui FC, Zhu GS, Wang C (2021) Constructing mesoporous adsorption channels and MOF–polymer interfaces in electrospun composite fibers for effective removal of emerging organic contaminants. ACS Appl Mater Interfaces 13(1):755–764. https://doi.org/10.1021/acsami.0c20404

    Article  CAS  PubMed  Google Scholar 

  4. Feng ML, Sarma D, Qi XH, Du KZ, Huang XY, Kanatzidis MG (2016) Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J Am Chem Soc 138(38):12578–12585. https://doi.org/10.1021/jacs.6b07351

    Article  CAS  PubMed  Google Scholar 

  5. Dang DH, Novotnik B, Wang W, Georg RB, Evans RD (2016) Uranium isotope fractionation during adsorption, (Co)precipitation, and biotic reduction. Environ Sci Technol 50(23):12695–12704. https://doi.org/10.1021/acs.est.6b01459

    Article  CAS  PubMed  Google Scholar 

  6. Chi FT, Zhang S, Wen J, Xiong J, Hu S (2018) Highly efficient recovery of uranium from seawater using an electrochemical approach. Ind Eng Chem Res 57(23):8078–8084. https://doi.org/10.1021/acs.iecr.8b01063

    Article  CAS  Google Scholar 

  7. Huang Z, Dong H, Yang N, Li H, He NN, Lu XR, Wen J, Wang XL (2020) Bifunctional phosphorylcholine-modified adsorbent with enhanced selectivity and antibacterial property for recovering uranium from seawater. ACS Appl Mater Interfaces 12(14):16959–16968. https://doi.org/10.1021/acsami.0c01843

    Article  CAS  PubMed  Google Scholar 

  8. Ma SL, Huang L, Ma LJ, Shim Y, Islam SM, Wang PL, Zhao LD, Wang SC, Sun GB, Yang XJ, Kanatzidis MG (2015) Efficient uranium capture by polysulfide/layered double hydroxide composites. J Am Chem Soc 137(10):3670–3677. https://doi.org/10.1021/jacs.5b00762

    Article  CAS  PubMed  Google Scholar 

  9. Sun Q, Aguila B, Earl LD, Abney CW, Wojtas L, Thallapally PK, Ma SQ (2018) Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv Mater 30(20):e1705479. https://doi.org/10.1002/adma.201705479

    Article  CAS  PubMed  Google Scholar 

  10. Das S, Oyola Y, Mayes RT, Janke CJ, Kuo LJ, Gill G, Wood JR, Dai S (2015) Extracting uranium from seawater: promising AF series adsorbents. Ind Eng Chem Res 55(15):4110–4117. https://doi.org/10.1021/acs.iecr.5b03136

    Article  CAS  Google Scholar 

  11. Kou SZ, Yang ZG, Sun F (2017) Protein hydrogel microbeads for selective uranium mining from seawater. ACS Appl Mater Interfaces 9(3):2035–2039. https://doi.org/10.1021/acsami.6b15968

    Article  CAS  PubMed  Google Scholar 

  12. Karmakar R, Sen K (2019) Role of biomolecules in selective extraction of U(VI) using an aqueous biphasic system. J Radioanal Nucl Chem 322(1):57–66. https://doi.org/10.1007/s10967-019-06494-w

    Article  CAS  Google Scholar 

  13. Zhang N, Xing YH, Bai FY (2020) Triazine functionalized porous three-dimensional uranyl-organic framework: extraction of Uranium(VI) and adsorption of cationic dyes in aqueous solution. Cryst Growth Des 20(3):1838–1848. https://doi.org/10.1021/acs.cgd.9b01553

    Article  CAS  Google Scholar 

  14. Sun YX, Huang HL, Vardhan H, Aguila B, Zhong CL, Perman JA, Al-Enizi AM, Nafady A, Ma SQ (2018) Facile approach to graft ionic liquid into MOF for improving the efficiency of CO2 chemical fixation. ACS Appl Mater Interfaces 10(32):27124–27130. https://doi.org/10.1021/acsami.8b08914

    Article  CAS  PubMed  Google Scholar 

  15. Zhao B, Yuan LY, Wang Y, Duan T, Shi WQ (2021) Carboxylated UiO-66 tailored for U(VI) and Eu(III) trapping: from batch adsorption to dynamic column separation. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.1c00364

    Article  PubMed  PubMed Central  Google Scholar 

  16. Luo SH, Zeng ZT, Zeng GM, Liu ZF, Xiao R, Chen M, Tang L, Tang WW, Lai C, Cheng M, Shao BB, Liang QH, Wang H, Jiang DN (2019) Metal organic frameworks as robust host of palladium nanoparticles in heterogeneous catalysis: synthesis, application, and prospect. ACS Appl Mater Interfaces 11(36):32579–32598. https://doi.org/10.1021/acsami.9b11990

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Jiang LY, Chen S, Kirchon A, Li B, Li YS, Zhou HC (2019) Metal-organic framework containing planar metal-binding sites: efficiently and cost-effectively enhancing the kinetic separation of C2H2/C2H4. J Am Chem Soc 141(9):3807–3811. https://doi.org/10.1021/jacs.8b13463

    Article  CAS  PubMed  Google Scholar 

  18. Song Y, Wei GY, Kopeć M, Rao LF, Zhang ZC, Gottlieb E, Wang ZY, Yuan R, Ye G, Wang JC, Kowalewski T, Matyjaszewski K (2018) Copolymer-templated synthesis of nitrogen-doped mesoporous carbons for enhanced adsorption of hexavalent chromium and uranium. ACS Appl Nano Mater 1(6):2536–2543. https://doi.org/10.1021/acsanm.8b00103

    Article  CAS  Google Scholar 

  19. Chen XR, Tong RL, Shi ZQ, Yang B, Liu H, Ding SP, Wang X, Lei QF, Wu J, Fang WJ (2018) MOF Nanoparticles with encapsulated autophagy inhibitor in controlled drug delivery system for antitumor. ACS Appl Mater Interfaces 10(3):2328–2337. https://doi.org/10.1021/acsami.7b16522

    Article  CAS  PubMed  Google Scholar 

  20. Xu L, Zhang D, Ma FY, Zhang JR, Khayambashi A, Cai YW, Chen LH, Xiao CL, Wang SA (2019) Nano-MOF+ technique for efficient uranyl remediation. ACS Appl Mater Interfaces 11(24):21619–21626. https://doi.org/10.1021/acsami.9b06068

    Article  CAS  PubMed  Google Scholar 

  21. Zhang JC, Zhang HS, Liu Q, Song DL, Li RM, Liu PL, Wang J (2019) Diaminomaleonitrile functionalized double-shelled hollow MIL-101 (Cr) for selective removal of uranium from simulated seawater. Chem Eng J 368:951–958. https://doi.org/10.1016/j.cej.2019.02.096

    Article  CAS  Google Scholar 

  22. Lee I, Choi S, Lee HJ, Oh M (2015) Hollow metal-organic framework microparticles assembled via a self-templated formation mechanism. Cryst Growth Des 15(11):5169–5173. https://doi.org/10.1021/acs.cgd.5b00919

    Article  CAS  Google Scholar 

  23. Dou WX, Yang WT, Zhao XJ, Pan QH (2019) Hollow cobalt sulfide for highly efficient uranium adsorption from aqueous solutions. Inorg Chem Front 6(11):3230–3236. https://doi.org/10.1039/c9qi00737g

    Article  CAS  Google Scholar 

  24. Zhang HF, Zhao M, Yang Y, Lin YS (2019) Hydrolysis and condensation of ZIF-8 in water. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2019.109568

    Article  Google Scholar 

  25. Wang CH, Zheng T, Luo R, Liu C, Zhang M, Li JS, Sun XY, Shen JY, Han WQ, Wang LJ (2018) In situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(VI) removal. ACS Appl Mater Interfaces 10(28):24164–24171. https://doi.org/10.1021/acsami.8b07826

    Article  CAS  PubMed  Google Scholar 

  26. Liu LJ, Yang WT, Gu DX, Zhao XJ, Pan QH (2019) In situ preparation of Chitosan/ZIF-8 composite beads for highly efficient removal of U(VI). Front Chem 7:607. https://doi.org/10.3389/fchem.2019.00607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang YF, Wang FW, Yang QH, Hu YL, Yan H, Chen YZ, Liu HR, Zhang GQ, Lu JL, Jiang HL, Xu HX (2014) Hollow metal-organic framework nanospheres via emulsion-based interfacial synthesis and their application in size-selective catalysis. ACS Appl Mater Interfaces 6(20):18163–18171. https://doi.org/10.1021/am505145d

    Article  CAS  PubMed  Google Scholar 

  28. Cheng XX, Jiang ZY, Cheng XP, Yang H, Tang L, Liu GH, Wang MR, Wu H, Pan FS, Cao XZ (2018) Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. J Membr Sci 555:146–156. https://doi.org/10.1016/j.memsci.2018.03.024

    Article  CAS  Google Scholar 

  29. Yang WT, Pan QH, Song SY, Zhang HJ (2019) Metal–organic framework-based materials for the recovery of uranium from aqueous solutions. Inorg Chem Front 6(8):1924–1937. https://doi.org/10.1039/c9qi00386j

    Article  CAS  Google Scholar 

  30. Bai ZQ, Yuan LY, Zhu L, Liu ZR, Chu SQ, Zheng LR, Zhang J, Chai ZF, Shi WQ (2015) Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J Mater Chem A 3(2):525–534. https://doi.org/10.1039/C4TA04878D

    Article  CAS  Google Scholar 

  31. Liu R, Zhang W, Chen YT, Wang YS (2020) Uranium (VI) adsorption by copper and copper/iron bimetallic central MOFs. Colloids Surf, A. https://doi.org/10.1016/j.colsurfa.2019.124334

    Article  Google Scholar 

  32. Luo BC, Yuan LY, Chai ZF, Shi WQ, Tang Q (2016) U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 307(1):269–276. https://doi.org/10.1007/s10967-015-4108-3

    Article  CAS  Google Scholar 

  33. Wu YH, Li BY, Wang XX, Yu SJ, Pang HW, Liu Y, Liu XY, Wang XK (2019) Magnetic metal-organic frameworks (Fe3O4@ZIF-8) composites for U(VI) and Eu(III) elimination: simultaneously achieve favorable stability and functionality. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122105

    Article  Google Scholar 

  34. Yang PP, Liu Q, Liu JY, Zhang HS, Li ZS, Li RM, Liu LH, Wang J (2017) Interfacial growth of a metal–organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(VI). J Mater Chem A 5(34):17933–17942. https://doi.org/10.1039/c6ta10022h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Science Foundation of Hainan Province (2019RC005), the National Natural Science Foundation of China (22061014 and 21761010), Haikou Science and Technology Project (2020-033) and Hainan University start-up fund (KYQD(ZR)1806) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiting Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 858 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Dou, W., Yang, W. et al. Enhanced uranium extraction from aqueous solution using hollow ZIF-8. J Radioanal Nucl Chem 329, 1011–1017 (2021). https://doi.org/10.1007/s10967-021-07848-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07848-z

Keywords

Navigation