Skip to main content
Log in

Natural radioactivity in springs of Sverdlovsk region, Middle Urals, Russia

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Activity concentrations of natural radionuclides were determined in water from 31 springs of Sverdlovsk region, Middle Urals, Russia. Activity concentrations of 222Rn varied from 2.4 to 161 Bq L−1 providing the average annual internal dose exposure of 0.27 mSv. The maximal 238U and 232Th activities were 0.124 Bq L−1 and 0.005 Bq L−1 respectively resulting in insignificant risk. No correlation between activities of 222Rn and 232Th or 238U were found. Activity concentrations of 226Ra determined in seven springs with the highest radon content varied from 0.1 to 0.87 mBq L−1 providing annual doses of 0.02–0.18 µSv y−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iličić D, Palijan G (2019) Persistence of coliform bacteria in spring water microcosms. Hrvatske Vode 27(109):193–200

    Google Scholar 

  2. Idrissova GZ, Akhmedenov KM, Sergeeva IV, Ponomareva AL, Sergeeva ES (2017) Monitoring studies of the ecological state of springs in the Aktobe region in Western Kazakhstan. J Pharm Sci Res 9(7):1122–1127

    CAS  Google Scholar 

  3. Jawadi HA, Malistani HA, Moheghy MA, Sagin J (2021) Essential trace elements and arsenic in thermal springs, Afghanistan. Water (Switzerland) 13(2):134

    Google Scholar 

  4. Ulniković VP, Kurilić SM (2020) Heavy metal and metalloid contamination and health risk assessment in spring water on the territory of Belgrade City, Serbia. Environ Geochem Health 42(11):3731–3751

    Article  Google Scholar 

  5. Ghobadi A, Cheraghi M, Sobhanardakani S, Lorestani B, Merrikhpour H (2020) Hydrogeochemical characteristics, temporal, and spatial variations for evaluation of groundwater quality of Hamedan-Bahar Plain as a major agricultural region, West of Iran. Environ Earth Sci 79(18):428

    Article  CAS  Google Scholar 

  6. Capraro F, Bizzotto A, Masiol M, Pavoni B (2011) Chemical analyses of spring waters and factor analysis to monitor the functioning of a karstic system. The role of precipitations regimen and anthropic pressures. J Environ Monitor 13(9):2543–2549

    Article  CAS  Google Scholar 

  7. Erden PE, Dirican A, Seferinoğlu M, Yeltepe E, Şahin NK (2014) 238U, 234U and 226Ra concentrations in mineral waters and their contribution to the annual committed effective dose in Turkey. J Radioanal Nucl Chem 301:159–166

    Article  CAS  Google Scholar 

  8. Chau ND, Michalec B (2009) Natural radioactivity in bottled natural spring, mineral and therapeutic waters in Poland. J Radioanal Nucl Chem 279:121–129

    Article  CAS  Google Scholar 

  9. Singla AK, Kansal S, Mehra R (2021) Quantification of radon contamination in drinking water of Rajasthan, India. J Radioanal Nucl Chem 327:1149–1157

    Article  CAS  Google Scholar 

  10. Nazir S, Simnani S, Sahoo BK, Mishra R, Sharma T, Masood S (2020) Monitoring geothermal springs and groundwater of Pir Panjal, Jammu and Kashmir, for radon contamination. J Radioanal Nucl Chem 326:1915–1923

    Article  Google Scholar 

  11. Jobbágy V, Altzitzoglou T, Malo P, Tanner V, Hult M (2017) A brief overview on radon measurements in drinking water. J Environ Radioactiv 173:18–24

    Article  Google Scholar 

  12. United States Environmental Protection Agency (US EPA) (1991) Radon measurement proficiency (RMP) program handbook. EPA 520/1-91-006. Office of Radiation Programs, Washington

  13. SanPiN 2.6.1.2523-09 (2010) “Normy radiatsionnoy bezopasnosti (NRB-99/2009)”. [“Radiation safety norms” (NRB-99/2009)]. M.: Energoatomizdat (in Russian)

  14. DNAOP-97. NRBU-97/D 2000 (DNAOP 0.03-3.24-97 (DGN 6.6.1-6.5.061-98)) Normi radiatsionnoy bezpeki Ukraini [Norms of radiation safety in Ukraine] (NRBU-97). https://dnaop.com/html/43243/doc-%D0%94%D0%9D%D0%90%D0%9E%D0%9F_-97/. Accessed 02 March 2021 (in Ukrainian)

  15. European Commission. Council Directive 2013/51/EURATOM of 22 October 2013 (2013) Laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0051&rid=7. Accessed 02 March 2021

  16. World Health Organization. Guidelines for Safe Drinking-Water Quality; Fourth Edition 2011. http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf. Accessed 02 March 2021

  17. Australian Drinking Water Guidelines 6 (2011) Version 3.5 Updated August 2018. https://www.nhmrc.gov.au/about-us/publications/australian-drinking-water-guidelines. Accessed 02 March 2021

  18. Kasić A, Kasumović A, Adrović F, Hodžić M (2016) Radon measurements in well and spring water of the Tuzla area, Bosnia and Herzegovina. Arh Hig Rada Toksikol 67:332–339

    Article  Google Scholar 

  19. Smith L, Voutchkov M (2017) Assessment of radon levels in drinking water wells in St Catherine Jamaica. J Health Pollut 7(16):31–37

  20. State Reports of the Ministry of Ecology and Natural Resources of Sverdlovsk Region https://mprso.midural.ru/article/show/id/1126. Accessed 23 March 2021 (in Russian)

  21. Semenishchev VS, Betenekov ND, Tomashova LA, Voronina AV (2017) Determination of Ra-224 and Ra-226 in drinking waters. AIP Conf Proc 1886(1):020061

    Article  CAS  Google Scholar 

  22. Surbeck H (2000) Alpha spectrometry sample preparation using selectively adsorbing thin films. Appl Radiat Isot 53:97–100

    Article  CAS  Google Scholar 

  23. Nucfilm Discs website. http://www.nucfilm.ch/nucfilm_discs.html. Accessed 07 June 2021

  24. ICRP Compendium of dose coefficients based on ICRP Publication 60 ICRP Publication 119, Ann. ICRP, 41, Elsevier (2012)

  25. Girault F, Perrier F, Przylibski TA (2016) Radon-222 and radium-226 occurrence in water: a review. Geol Soc Lond Special Publ 451(1):131–154

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR and Sverdlovsk region, Project No. 20-43-660055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Semenishchev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenishchev, V.S., Voronina, A.V., Titova, S.M. et al. Natural radioactivity in springs of Sverdlovsk region, Middle Urals, Russia. J Radioanal Nucl Chem 329, 857–863 (2021). https://doi.org/10.1007/s10967-021-07847-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07847-0

Keywords

Navigation