Skip to main content
Log in

Investigation on the magnetic and Mössbauer spectroscopy of 57Fe doped LiMnPO4

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The 57Fe doped LiMnPO4 cathode with potential applications in Li-ion batteries was prepared by solid-state reaction. The magnetic susceptibility ordered antiferromagnetically at Néel temperature (TN = 34 K). The spin reorientation temperature (TS) and effective moment were determined to be 8 K and 5.78 μB. We obtained the Mössbauer spectra at various temperatures and fitted the spectra below TN to eight absorption lines. The behavior of the magnetic hyperfine field and the quadrupole splitting change with increasing temperature above TS indicates that the quenched orbital angular moment is due to a strong crystal field at the Mn(Fe)O6 site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deng Y, Yang C, Zou K, Qin X, Zhao Z, Chen G (2017) Recent advances of Mn-rich LiFe1-yMnyPO4 (0.5≤y≤1.0) cathode materials for high energy density lithium ion batteries. Adv Energy Mater 7:1601958

    Article  Google Scholar 

  2. Zhang TW, Tian T, Shen B, Song YH, Yao HB (2019) Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos Commun 14:7–14

    Article  CAS  Google Scholar 

  3. Xu X, Wang T, Bi Y, Liu M, Yang W, Peng Z, Wang D (2017) Improvement of electrochemical activity of LiMnPO4-based cathode by surface iron enrichment. J Power Sources 341:75–182

    Article  Google Scholar 

  4. Sun C, Rajasekhara S, Goodenough JB, Zhou F (2011) Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J Am Chem Soc 133:2132–2135

    Article  CAS  Google Scholar 

  5. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  6. Aravindan V, Gnanarnj J, Lee YS, Madhavi S (2013) LiMnPO4–A next generation cathode material for lithium-ion batteries. J Mater Chem A 1:3518–3539

    Article  CAS  Google Scholar 

  7. Shang SL, Wang Y, Mei ZG, Hui XD, Liu ZK (2011) Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe Co, and Ni): a comparative first-principles study. J Mater Chem 22:1142–1149

    Article  Google Scholar 

  8. Jung YH, Park WB, Pyo M, Sohn KS, Ahn D (2017) A multi-element doping design for a high-performance LiMnPO4 cathode via metaheuristic computation. J Mater Chem A 5:8939–8945

    Article  CAS  Google Scholar 

  9. Wang Yan WuCY, Yang H, Duh JG (2018) Rational design of a synthetic strategy, carburizing approach and pore-forming pattern to unlock the cycle reversibility and rate capability of micro-agglomerated LiMn0.8Fe0.2PO4 cathode materials. J Mater Chem A 6:10395–10403

    Article  Google Scholar 

  10. Sgroi MF, Lazzaroni R, Beljonne D, Pullini D (2017) Doping LiMnPO4 with cobalt and nickel: a first principle study. Batteries 3:11

    Article  Google Scholar 

  11. Xu J, Dou S, Liu H, Dai L (2013) Cathode materials for next generation lithium ion batteries. Nano Energy 2:439–442

    Article  CAS  Google Scholar 

  12. Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) Olivine-type cathodes: achievements and problems. J Power Sources 119:232–238

    Article  Google Scholar 

  13. Zhang Y, Zhao Y, Deng L (2012) Enhanced electrochemical properties of LiMnPO4/C via doping with Cu. Ionics 18:573–578

    Article  CAS  Google Scholar 

  14. Kosova NV, Podgornova OA, Gutakovskii AK (2018) Different electrochemical responses of LiFe0.5Mn0.5PO4 prepared by mechanochemical and solvothermal methods. J Alloys Compd 742:454–465

    Article  CAS  Google Scholar 

  15. Wang Y, Yang H, Wu CY, Duh JG (2017) Facile and controllable one-pot synthesis of nickel-doped LiMn0.8Fe0.2PO4 nanosheets as high performance cathode materials for lithium-ion batteries. J Mater Chem A 5:18674–18683

    Article  CAS  Google Scholar 

  16. Rhee CH, Kim SJ, Kim CS (2011) Mössbauer studies of spin-orbit coupling in LiCo0.9957Fe0.01PO4. IEEE Trans Magn 47:2697–2700

    Article  CAS  Google Scholar 

  17. Kim W, Rhee CH, Kim HJ, Moon SJ, Kim CS (2010) Strong crystalline field at the Fe site and spin rotation in olivine LiNi0.9957Fe0.01PO4 material by Mössbauer spectroscopy. Appl Phys Lett 96:242505

    Article  Google Scholar 

  18. Stephanie G, Efrain ER (2020) Distinguishing the intrinsic antiferromagnetism in polycrystalline LiCoPO4 and LiMnPO4 olivines. Inorg Chem 59:5883–5895

    Article  Google Scholar 

  19. Lee IK, Kim SJ, Kim CS (2012) Magnetic properties of phospho-olivine Li(Fe1-xMnx)PO4 investigated With Mössbauer spectroscopy. IEEE Trans Magn 48:1553–1555

    Article  CAS  Google Scholar 

  20. Julien CM, Ait-Salah A, Mauger A, Gendron F (2006) Magnetic properties of lithium intercalation compounds. Ionics 12:21–32

    Article  CAS  Google Scholar 

  21. Ok HN, Mullen JG (1968) Magnetic properties of iron ions in CoO(I) and CoO(II). Phys Rev 168:563–574

    Article  CAS  Google Scholar 

  22. Kim CS, Shim IB, Ha MY, Kim CS (1993) Magnetic properties of the monoclinic FeRh2Se4. J Appl Phys 73(10):5707–5709

    Article  CAS  Google Scholar 

  23. Kmječ T, Kohout J, Dopita M, Veverka M, Kuriplach J (2019) Mössbauer spectroscopy of triphylite (LiFePO4) at low temperatures. Condens Matter 4(4):86

    Article  Google Scholar 

  24. Rhee CH, Lee IK, Moon SJ, Kim SJ, Kim CS (2011) Neutron diffraction and Mössbauer studies of LiFePO4. J Korean Phys Soc 58(3):472

    Article  CAS  Google Scholar 

  25. Kwon WJ, Lee IK, Rhee CH, Kim CS (2012) Spin-reorientation in the antiferromagnetic ordering of LiFe1-xMnxPO4 investigated with Mössbauer spectroscopy. J Appl Phys 111:07E139

    Article  Google Scholar 

  26. Dai D, Whangbo MH, Koo HJ, Rocquefelte X, Jobic S, Villesuzanne A (2005) Analysis of the spin exchange interactions and the ordered magnetic structures of lithium transition metal phosphates LiMPO4 (M=Mn, Fe Co, Ni) with the olivine structure. Inorg Chem 44(7):2407–2413

    Article  CAS  Google Scholar 

  27. Li J, Tian W, Chen Y, Zarestky JL, Lynn JW, Vaknin D (2009) Antiferromagnetism in the magnetoelectric effect single crystal LiMnPO4. Phys Rev B 79(14):144410

    Article  Google Scholar 

  28. Kim HS, Kim CS (2014) A study of spin canting in Li3Fe2(PO4)3 with Mössbauer spectroscopy under 5 T. J Appl Phys 115:17E126

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Mid-Career Researcher Program, through the National Research Foundation of Korea (NRF), with a Grant funded by the Ministry of Education, Science and Technology (MEST) (NRF-2017R1A2B2012241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul Sung Kim.

Ethics declarations

Conflict of interest

All the authors do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Seo, J.Y. & Kim, C.S. Investigation on the magnetic and Mössbauer spectroscopy of 57Fe doped LiMnPO4. J Radioanal Nucl Chem 330, 461–467 (2021). https://doi.org/10.1007/s10967-021-07836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07836-3

Keywords

Navigation