Skip to main content

Advertisement

Log in

Mn–Zn ferrite nanoparticles for application in magnetic hyperthermia

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Mn–Zn ferrite nanoparticles for magnetic hyperthermia applications were synthesized by a high temperature thermal decomposition method. The crystallographic, magnetic, and thermal properties of the prepared Mn–Zn nanoparticles were investigated using a vibrating-sample magnetometer, X-ray photoelectron spectroscopy, Raman, Mössbauer spectroscopy, and magnetic hyperthermia system. Among Mn–Zn ferrites, the saturation magnetization of Mn0.2Zn0.8Fe2O4 reached maximum value (83.2 emu/g). The heating temperature of Mn0.2Zn0.8Fe2O4 was 118.5 and 48.1 °C for powder and agar solution at 50 kHz and 250 Oe. These results suggest that the synthesized nanoparticles can be potential candidates for their use in magnetic hyperthermia areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Manohar A, Krishnamoorthi C, Chandra Babu Naidu K, Palajonnala Narasaiah B (2020) Dielectric, magnetic hyperthermia and photocatalytic properties of Mg0.7Zn0.3Fe2O4 nanocrystals. IEEE Trans Magn 56(12):5200207

    Article  CAS  Google Scholar 

  2. Banobre-López M, Teijeiro A, Rivas J (2013) Magnetic nanoparticles-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother 18(6):397–400

    Article  Google Scholar 

  3. Chandunika RK, Vijayaraghavan R, Kumar Sahu N (2020) Magnetic hyperthermia application of MnFe2O4 nanostructures processed through solvents with the varying boiling point. Mater Res Express 7(6):064002

    Article  CAS  Google Scholar 

  4. Périgo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, Teran FJ (2015) Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev 2(4):041302

    Article  Google Scholar 

  5. Etemadi H, Plieger PG (2020) Magnetic fluid hyperthermia based on magnetic nanoparticles: physical characteristics, historical perspective, clinical trials, technological challenges, and recent advances. Adv Therap 3(11):2000061

    Article  Google Scholar 

  6. Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Zhang Y, Chen S, Tiwari S, Shi K, Zhang S, Fan HM, Zhao YX, Liang X-J (2020) Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics 10(8):3793–3815

    Article  CAS  Google Scholar 

  7. Rajan A, Sharma M, Sahu NK (2020) Assessing magnetic and inductive thermal properties of various surfactants functionalized Fe3O4 nanoparticles hyperthermia. Sci Rep 10(1):15045

    Article  Google Scholar 

  8. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324(6):903–915

    Article  CAS  Google Scholar 

  9. Shibata M, Ogawa T, Kawashita M (2019) Synthesis of iron nitride nanoparticles from magnetite nanoparticles of different sizes for application to magnetic hyperthermia. Ceram Int 45(17):23707–23714

    Article  CAS  Google Scholar 

  10. Babič M, Horák D, Molčan M, Timko M (2017) Heat generation of surface-modified magnetic γ-Fe2O3 nanoparticles in applied alternating magnetic field. J Phys D Appl Phys 50(34):345002

    Article  Google Scholar 

  11. Choi H, Kim SJ, Choi EH, Kim CS (2015) Study of hyperthermia through the bioplasma treatment and magnetic properties of Fe3O4 nanoparticles. IEEE Trans Magn 51(11):2003603

    Google Scholar 

  12. Tran N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20(40):8760–8767

    Article  CAS  Google Scholar 

  13. Chang D, Lim M, Goos JACM, Qiao R, Ng YY, Mansfeld FM, Jackson M, Davis TP, Kavallaris M (2018) Biologically targeted magnetic hyperthermia: potential and limitations. Front Pharmacol 9:831

    Article  Google Scholar 

  14. Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2(1):23–30

    Article  Google Scholar 

  15. Garanina AS, Naumenko VA, Nikitin AA, Myrovali E, Petukhova AY, Klimyuk SV, Nalench YA, Ilyasov AR, Vodopyanov SS, Erofeev AS, Gorelkin PV, Angelakeris M, Savchenko AG, Wiedwald U, Majouga AG, Abakumov MA (2020) Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination. Nanomedicine: NBM 25:102171

    Article  CAS  Google Scholar 

  16. Zverev VI, Pyatakov AP, Shtil AA, Tishin AM (2018) Novel applications of magnetic materials and technologies for medicine. J Magn Magn Mater 459:182–186

    Article  CAS  Google Scholar 

  17. Tishin MA, Shtil AA, Pyatakov AP, Zverev VI (2016) Developing antitumor magnetic hyperthermia: principles, materials and devices. Recent Pat Anti-Cancer Drug Discov 11(4):360–375

    Article  CAS  Google Scholar 

  18. Srinivasan SY, Paknikar KM, Bodas D, Gajbhiye V (2018) Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 13(10):1221–1238

    Article  CAS  Google Scholar 

  19. Mameli V, Musinu A, Ennas G, Peddis D, Niznansky D, Sangregorio C, Innocenti C, Thanh NTK, Cannas C (2016) Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8(19):10124–10137

    Article  CAS  Google Scholar 

  20. He S, Zhang H, Liu Y, Sun F, Yu X, Li X, Zhang L, Wang L, Mao K, Wang G, Lin Y, Han Z, Sabirianov ZH (2018) Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard-Soft Mixed Ferrites. Small 14(29):1800135

    Article  Google Scholar 

  21. Iacovita C, Florea A, Scorus L, Pall E, Dudric R, Moldovan AI, Stiufiuc R, Tetean R, Lucaciu CM (2019) Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process. Nanomaterials 9(10):1489

    Article  CAS  Google Scholar 

  22. Xie J, Yan C, Yan Y, Chen L, Song L, Zang F, An Y, Teng G, Gu N, Zhang Y (2016) Multi-modal Mn–Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale 8(38):16902–16915

    Article  CAS  Google Scholar 

  23. Lin M, Huang J, Sha M (2014) Recent advances in nanosized Mn–Zn Ferrite Magnetic Fluid Hyperthermia For Cancer Treatment. J Nanosci Nanotechnol 14(1):792–802

    Article  CAS  Google Scholar 

  24. Denton AR, Ashcroft NW (1991) Vegard’s law. Phys Rev A 43:3161–3164

    Article  CAS  Google Scholar 

  25. Patterson A (1939) The Scherrer formula for X-Ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  26. Hou X, Feng J, Liu X, Ren Y, Fan Z, Zhang M (2011) Magnetic and high rate adsorption properties of porous Mn1-xZnxFe2O4 (0≤x≤0.8) adsorbents. J Colloid Interface Sci 353(2):524–529

    Article  CAS  Google Scholar 

  27. White W, DeAngelis B (1967) Interpretation of the vibrational spectra of spinels. Spectrochim Acta Part A 23(4):985–995

    Article  CAS  Google Scholar 

  28. Varshney D, Verma K, Kumar A (2011) Structural and vibrational properties of ZnxMn1-xFe2O4 (x = 0.0, 0.25, 0.50, 0.75, 1.0) mixed ferrites. Mater Chem Phys 131(1–2):413–419

    Article  CAS  Google Scholar 

  29. Yadav RS, Kuřitka I, Vilcakova J, Jamatia T, Machovsky M, Skoda D, Urbánek P, Masař M, Urbánek M, Kalina L, Havlica J (2020) Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrason Sonochem 61:104839

    Article  Google Scholar 

  30. Fu Y, Xiong P, Chen H, Sun X, Wang X (2012) High photocatalytic activity of magnetically separable manganese ferrite-graphene heteroarchitectures. Ind Eng Chem Res 51(2):725–731

    Article  Google Scholar 

  31. Ravichandran M, Velumani S (2020) Manganese ferrite nanocubes as an MRI contrast agent. Mater Res Express 7(1):016107

    Article  CAS  Google Scholar 

  32. Shanmugavani A, Kalai Selvan R (2014) Synthesis of ZnFe2O4 nanoparticles and their asymmetric configuration with Ni(OH)2 for a pseudocapacitor. RSC Adv 4(51):27022–27029

    Article  CAS  Google Scholar 

  33. Phor L, Chahal S, Kumar V (2020) Zn2+ substituted superparamagnetic MgFe2O4 spinel-ferrites: Investigations on structural and spin-interactions. J Adv Ceram 9(5):576–587

    Article  CAS  Google Scholar 

  34. Mørup S, Brok E, Frandsen C (2013) Spin structures in magnetic nanoparticles. J Nanomater 2013:1–8

    Article  Google Scholar 

  35. Gupta M, Randhawa BS (2011) Mössbauer, magnetic and electric studies on mixed Rb-Zn ferrites prepared by solution combustion method. Chem Phys 130(1–2):513–518

    CAS  Google Scholar 

  36. Zhang Y, Lin J, Wen D (2010) Structure, infrared radiation properties and Mössbauer spectroscopic investigations of Co0.6Zn0.4NixFe2-xO4. Ceramics J Mater Sci Technol 26(8):687–692

    Article  Google Scholar 

  37. Siddique M, Butt NM (2010) Effect of particle size on degree of inversion in ferrites investigated by Mössbauer spectroscopy. Phys Rev B Condens Matter 405(19):4211–4215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunkyung Choi.

Ethics declarations

Conflict of interest

All the authors do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Hyun, S.W., Kim, S.H. et al. Mn–Zn ferrite nanoparticles for application in magnetic hyperthermia. J Radioanal Nucl Chem 330, 445–454 (2021). https://doi.org/10.1007/s10967-021-07830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07830-9

Keywords

Navigation