Skip to main content
Log in

Immobilization of uranium soils with alkali-activated coal gangue–based geopolymer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Uranium is a relatively active and chemically toxic natural radionuclide, its enrichment in the environment poses a serious threat to human health and ecosystems. It is necessary to dispose the uranium contaminated soil safely and efficiently. In this study, the effect of coal gangue-based geopolymers on the solidification of uranium-contaminated soil was examined using a single factor experiment. The highest compressive strength of the solidified body reached 24.6 MPa, and the highest fixation efficiency of uranium reached 77.44%. The results show that lower liquid-to-solid ratio, higher alkali activator content and lower alkali activator modulus promote the solidification of uranium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Deng G, Zhang Y, Luo X, Yang J (2018) Hydrothermal leather waste by hydrothermal method for uranium (VI) removal from a Simulated Saline Solution. Appl Organomet Chem 32(9):e4473

    Article  Google Scholar 

  2. Bo L, Hongjuan S, Tongjiang P, Tao D (2019) Transport and transformation of uranium and heavy metals from uranium tailings under simulated rain at different pH. Environ Chem Lett 18(2):495–503

    Google Scholar 

  3. Nair RN, Sunny F, Manikandan ST (2010) Modelling of decay chain transport in groundwater from uranium tailings ponds. Appl Math Model 34(9):2300–2311

    Article  Google Scholar 

  4. Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elem 2(6):335–341

    Article  CAS  Google Scholar 

  5. Ding H, Zhang X, Yang H, Zhang Y, Luo X (2019) Biosorption of U(VI) by active and inactive Aspergillus niger: equilibrium, kinetic, thermodynamic and mechanistic analyses. J Radioanal Nucl Chem 319(3):1261–1275

    Article  CAS  Google Scholar 

  6. Neves O, Matias MJ (2007) Assessment of groundwater quality and contamination problems ascribed to an abandoned uranium mine (Cunha Baixa region, Central Portugal). Environ Geol 53(8):1799–1810

    Article  Google Scholar 

  7. Tang H, Li Y, Huang W, Chen S, Luo F, Shu X, Tan H, Li B, Xie Y, Shao D, Lu X (2019) Chemical behavior of uranium contaminated soil solidified by microwave sintering. J Radioanal Nucl Chem 322(3):2109–2117

    Article  CAS  Google Scholar 

  8. Falcigliaa PP, Cannatab S, Ursob G, Scandura P, Vagliasindi F (2013) Development and Application of a mathematical model for the assessment of the treatability of radionuclides polluted soils by microwave heating stabilisation: preliminary results. Chem Eng J 32:373–378

    Google Scholar 

  9. Krawczyk-Barsch E, Lutke L, Moll H, Bok F, Steudtner R, Rossberg A (2015) A spectroscopic study on U(VI) biomineralization in cultivated Pseudomonas fluorescens biofilms isolated from granitic aquifers. Environ Sci Pollut Res 22(6):4555–4565

    Article  Google Scholar 

  10. Jiang F, Guo J, Wang X, Liu Y, Li X, Chen G, Wang Z, Yang J, Tan B (2020) Experimental study on the leaching performance of U(VI) solidified by uranium tailing cement with different admixtures and ratios. Environ Technol Innov 17:100506

    Article  Google Scholar 

  11. Donald IW (2010) Waste immobilization in glass and ceramic based hosts. John Wiley & Sons, London, Chippenham

    Book  Google Scholar 

  12. Huang X, Huang T, Li S, Muhammad F, Xu G, Zhao Z, Yu L, Yan Y, Li D, Jiao B (2016) Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer. Ceram Int 42(8):9538–9549

    Article  CAS  Google Scholar 

  13. DAVIDOVITS J, (1989) Geopolymers and geopolymeric materials. J Therm Anal 35(2):429–441

    Article  Google Scholar 

  14. Ji Z, Pei Y (2019) Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review. J Environ Manage 231:256–267

    Article  CAS  Google Scholar 

  15. Jiali L, Shukui Z, Lishan R, Jiang X, Linyu T, Luoing C (2020) A review on treatment of heavy metal using geopolymer technique. Fine Chem 37(07):1343–1351

    Google Scholar 

  16. Shujie Z, Faheem M, Lin Y, Ming X, Xiao H, Binquan J, Ning L, Dongwei L (2019) Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue–based alkali-activated cementitious materials. Environ Sci Pollut Res 26(25):25609–25620

    Article  Google Scholar 

  17. Datong Z, Wenyi W, Xiamimg B, Jidian Y (1999) Method of testing cements-determination of strength. The state bureau of quality and technical supervision, Beijing, China

  18. Chinese Research Academy of Environmental Sciences (2007) Solid waste-extraction procedure for leaching toxicity-Acetic acid buffer solution method. The state Environmental Protection Administration, Beijing, China

  19. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851

    Article  CAS  Google Scholar 

  20. Xiao J, Zhou SK, Chu LP, Liu YJ, Li JL, Zhang J, Tian LY (2020) Electrokinetic remediation of uranium(VI)-contaminated red soil using composite electrolyte of citric acid and ferric chloride. Environ Sci Pollut Res Int 27(4):4478–4488

    Article  CAS  Google Scholar 

  21. Pan Y, Wu Z, Zhou J, Zhao J, Ruan X, Liu J, Qian G (2013) Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. J Hazard Mater 261:269–276

    Article  CAS  Google Scholar 

  22. Li S, Huang X, Muhammad F, Yu L, Xia M, Zhao J, Jiao B, Shiau Y, Li D (2018) Waste solidification/stabilization of lead–zinc slag by utilizing fly ash based geopolymers. RSC Adv 8(57):32956–32965

    Article  CAS  Google Scholar 

  23. Liew Y-M, Heah C-Y, Mohd Mustafa AB, Kamarudin H (2016) Structure and properties of clay-based geopolymer cements: a review. Prog Mater Sci 83:595–629

    Article  CAS  Google Scholar 

  24. Rees CA, Provis JL, Lukey GC (2007) In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir 23(17):9076–9082

    Article  CAS  Google Scholar 

  25. Jaarsveld JGSV, Deventer JSJV (1999) Effect of the alkali metal activator on the properties of fly ash-based geopolymers. Ind Eng Chem Res 38(10):3932–3941

    Article  Google Scholar 

  26. Shi CJ, Jiménez AF, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 41(7):750–763

    Article  CAS  Google Scholar 

  27. Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Annu Rev Mater Res 44:299–327

    Article  CAS  Google Scholar 

  28. Vu TH, Van TM (2017) A review on immobilisation of toxic wastes using geopolymer technique. Springer, Singapore

    Google Scholar 

  29. Davidovits J (1994) Properties of geopolymer cements. First International Conference Alkaline Cements and Concretes, Ukraine, Kiev

  30. Huang X, Zhuang R, Muhammad F, Yu L, Shiau Y, Li D (2017) Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Chemosphere 168:300–308

    Article  CAS  Google Scholar 

  31. Yaguang W, Fenglan H, Jingqiu M (2018) Solidification/stabilization mechanism of Pb (II), Cd (II), Mn (II) and Cr (III) in fly ash based geopolymers. Constr Build Mater 160:818–827

    Article  Google Scholar 

  32. El-Eswed BI, M AO, I KF, (2017) Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II), Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers. Appl Clay Sci 140:148–156

    Article  CAS  Google Scholar 

  33. El-Eswed BI, Yousef RI, Alshaaer M, Hamadneh I, Al-Gharabli SI, Khalili; F, (2015) Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. Int J Miner Process 137:34–42

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 51174117), the Scientific Research Project of the Hunan Provincial Education Department (No. 17C0439) and Hunan Provincial Innovation Foundation for University, China (No. 201811528003).

Author information

Authors and Affiliations

Authors

Contributions

SZ: Writing- review & editing. JL: Data curation, Formal analysis, Investigation, Writing—original draft. LR, JX, YL, YD: Supervision, Validation. LC, QL, LY: Investigation. All authors read and contributed to the manuscript.

Corresponding author

Correspondence to Shukui Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Li, J., Rong, L. et al. Immobilization of uranium soils with alkali-activated coal gangue–based geopolymer. J Radioanal Nucl Chem 329, 1155–1166 (2021). https://doi.org/10.1007/s10967-021-07812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07812-x

Keywords

Navigation