Skip to main content
Log in

Encapsulation of 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione into the silica gel matrix for capturing uranium(VI) ion species

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The thenoyl-trifluoro-acetone (tta: 4,4,4-Trifluoro-1-(2-Thienyl)-1,3-butanedione) has been successfully encapsulated into the silica gel matrix producing a composite of general formula SG-TTA. The tendency of the new composite to remove and capture uranium(VI) ion species has been studied by using batch sorption. The maximum loading of uranium(VI) ion into SG-TTA is 98% upon the experimental of sorption parameters pHi > 5, Ci > 25 mg L−1, T = 25 °C, dosage = 2 g L−1 and 80 rpm. Thermodynamically, the sorption of U(VI) ion follows the Langmuir isotherm model (ca. R2 = 1) as a spontaneous process (ΔG = − 34.9593 kJ mol−1). Kinetically, the sorption follows a pseudo-second-order model (ca. R2 = 1) achieving chemisorption process, requiring activation energy (Ea) of 26.23732 kJ mol−1. The results obtained from this study serve the community and human life in terms of using SG-TTA composite to get rid of the uranium ion from water or even to reuse it peacefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Scheme 4
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Eggers MJ, Moore-Nall AL, Doyle JT, Lefthand MJ (2015) Potential Health Risks from Uranium in Home Well Water: An Investigation by the Apsaalooke (Crow) Tribal Research Group. Margaret J Anita L, John T., Myra J. Geosciences 5:67–94

    Article  CAS  Google Scholar 

  2. Schnug E, Lottermoser BG (2013) Fertilizer-derived uranium and its threat to human health. J Am Chem Soc 47(6):2433–2434

    CAS  Google Scholar 

  3. Banning A, Benfer M (2017) Drinking water uranium and potential health effects in the German Federal State of Bavaria. Int J Environ Res Public Health 14(8):927

    Article  PubMed Central  CAS  Google Scholar 

  4. Winde F, Erasmus E, Geipel G (2017) Uranium contaminated drinking water linked to leukemia-revisiting case study from South Africa taking alternative exposure pathways into account. Sci Total Environ 574:400–421

    Article  CAS  PubMed  Google Scholar 

  5. Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. J Multidiscip Eng Sci Stud 1(1):12–18

    Google Scholar 

  6. Kuhu AT (1972) Electrochemistry of cleaner environments. Plenum Press, New York

    Google Scholar 

  7. Elsayed HM, Fouad EA, El-Hazek NMT, Khoniem AK (2013) Uranium extraction enhancement from phosphoric acid by emulsion liquid membrane. J Radioanal Nucl Chem 298:1763–1775

    Article  CAS  Google Scholar 

  8. Gafvert T, Ellmark C, Holm E (2002) Removal of radionuclides at a waterworks. J Environ Radioact 63:105–115

    Article  CAS  PubMed  Google Scholar 

  9. Lee SY, Bondietti EA (1983) Removing uranium from drinking water by metal hydroxides and anion-exchange resin. J Am Water Works Assn 75:536–540

    Article  CAS  Google Scholar 

  10. Ohashi Y, Harada M, Asanuma N, Ikeda Y (2015) Feasibility studies on electrochemical recovery of uranium from solid wastes contaminated with uranium using 1-butyl-3-methylimidazorium chloride as an electrolyte. J Nucl Mater 464:119–127

    Article  CAS  Google Scholar 

  11. Poirier RH, Calkins GD, Lutz GA, Bearse AE (1958) Ion exchange separation of uranium from thorium. Ind Eng Chem 50:613–616

    Article  CAS  Google Scholar 

  12. Rafati L, Mahvi AH, Asgari AR, Hosseini SS (2010) Removal of chromium (VI) from aqueous solutions using Lewatit FO36 nano ion exchange resin. Int J Environ Sci Technol 7:147–156

    Article  CAS  Google Scholar 

  13. Asai S, Limbeck A (2015) LA-ICP-MS of rare earth elements concentrated in cation-exchange resin particles for origin attribution of uranium ore concentrate. Talanta 135:41–49

    Article  CAS  PubMed  Google Scholar 

  14. Djedidi Z, Bouda M, Souissi MA, Ben CR, Mercier G, Tyagi RD, Blais JF (2009) Metals removal from the soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. J Hazard Mater 172:1372–1382

    Article  CAS  PubMed  Google Scholar 

  15. Huxstep MR and Sorg TJ (1988) Removal of inorganic contaminants by reverse osmosis pilot plants. Project summary EPA/600/S2–87/109, U.S E.P.A., Cincinnati, OH

  16. Cojocaru C, Zakrzewska-Trznadel G, Jaworska A (2009) Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using an experimental design approach. Part 1: optimization of complexation conditions. J Hazard Mater 169:599–609

    Article  CAS  PubMed  Google Scholar 

  17. Kedari CS, Pandit SS, Gandhi PM (2013) Separation by competitive transport of uranium(VI) and thorium(IV) nitrates across supported renewable liquid membrane containing trioctylphosphine oxide as a metal carrier. J Membr Sci 430:188–195

    Article  CAS  Google Scholar 

  18. Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination—an overview. Talanta 68:1047–1064

    Article  CAS  PubMed  Google Scholar 

  19. Dietz ML, Horwitz EP, Sajdak LR, Chiarizia R (2001) An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media. Talanta 54:1173–1184

    Article  CAS  PubMed  Google Scholar 

  20. Aldrich C, Feng D (2000) Removal of heavy metals from wastewater effluents by biosorptive flotation. Miner Eng 13:1129–1138

    Article  CAS  Google Scholar 

  21. Saad B, Chong Ch, Ali ASM, Bari MF, Ab Rahman I, Mohamad N, Saleh MI (2006) Selective removal of heavy metal ions using sol–gel immobilized and SPE-coated thiacrown ethers. Anal Chim Acta 555(1):146–156

    Article  CAS  Google Scholar 

  22. Atkovska K, Lisichkov K, Ruseska G, Dimitrov AT, Grozdanov A (2018) Removal of heavy metal ions from wastewater using conventional and nanosorbents: a review. J Chem Technol Metall 53(2):202–219

    CAS  Google Scholar 

  23. Adkonis MR, Wolska L, Namiesnik J (2006) Analytical procedures for PAA and PCB determination in water samples-error sources. Crit Rev Anal Chem 36(2):63–72

    Article  CAS  Google Scholar 

  24. Li F, Du P, Chen W, Zhang S (2007) Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic–inorganic hybridization combined with sucrose and polyethylene glycol imprinting. Anal Chim Acta 585(2):211–218

    Article  CAS  PubMed  Google Scholar 

  25. Gill I, Ballesteros A (1998) Encapsulation of biologicals within silicate, siloxane, and hybrid sol–gel polymers: an efficient and generic approach. J Am Chem Society 120:8587–8598

    Article  CAS  Google Scholar 

  26. Pogorilyi RP, Goncharik VP, KozharaYu LIL (2008) Covalent immobilization of urease on polysiloxane matrices containing 3-aminopropyl and 3-mercaptopropyl groups. Appl Biochem Microbiol 44:561–565

    Article  CAS  Google Scholar 

  27. Soliman EM, Mahmoud ME, Ahmad SA (2013) Reactivity of thioglycolic acid physically and chemically bound to silica gel as new selective solid phase extractors for removal of heavy metal ions from natural water samples. Int J Environ Anal Chem 82(6):403–413

    Article  CAS  Google Scholar 

  28. Rosenberg E, Pinson G, Tsosie R, Tutu H, Cukrowska E (2016) Uranium remediation by ion exchange and sorption methods: a critical review. Johnson Matthey Technol Rev 60(1):59–77

    Article  Google Scholar 

  29. Merharil L (2009) Hybrid nanocomposites for nanotechnology, 3rd edn. Springer

    Book  Google Scholar 

  30. Kim YH, Choi GM, Bae JG, Kim YH, Bae BS (2018) High-performance and simply-synthesized ladder-like structured methacrylate siloxane hybrid material for flexible hard coating. Polymers 10(4):449

    Article  PubMed Central  CAS  Google Scholar 

  31. Ng NT, Kamaruddin AF, Ibrahim WAW, Sanagi MM, Abdul Keyon AS (2017) Advances in organic–inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples. J Sep Sci 41(1):195–208

    Article  PubMed  CAS  Google Scholar 

  32. Ogoshi T, Chujo Y (2005) Organic–inorganic polymer hybrids prepared by the sol–gel method. Compos Interfaces 11:539–566

    Article  CAS  Google Scholar 

  33. Yuan J, Zhou S, Gu G, Limin Wu (2005) Encapsulation of organic pigment particles with silica via sol–gel process. J Sol–Gel Sci Technol 36:265–274

    Article  CAS  Google Scholar 

  34. Yang S, Qian J, Kuang L, Hua D (2017) Ion-imprinted mesoporous silica for selective removal of uranium from highly acidic and radioactive effluent. ACS Appl Mater Interfaces 9(34):29337–29344

    Article  CAS  PubMed  Google Scholar 

  35. Lee HI, Kim JH, Kim JM, Kim S, Park J-N, Hwang JS, Yeon J-W, Jung Y (2010) Application of ordered nanoporous silica for removal of uranium ions from aqueous solutions. J Nanosci Nanotechnol 10:217–221

    Article  CAS  PubMed  Google Scholar 

  36. Cheira MF (2020) Performance of poly sulfonamide/nano-silica composite for adsorption of thorium ions from sulfate solution. SN Appl Sci 2:398

    Article  CAS  Google Scholar 

  37. Ren Y, Yang R, Shao L, Tang H, Wang S, Zhao J, Zhong J, Kong Ch (2016) The removal of aqueous uranium by SBA-15 modified with phosphoramide: a combined experimental and DFT study. RSC Adv 6:68695

    Article  CAS  Google Scholar 

  38. Dolatyari L, Yaftian MR, Rostamnia S (2016) Adsorption characteristics of Eu(III) and Th(IV) ions onto modified mesoporous silica SBA-15 materials. J Taiwan Inst Chem Eng 60:174–184

    Article  CAS  Google Scholar 

  39. Dolatyari L, Yaftian MR, Rostamnia S (2015) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manag 169:8–17

    Article  CAS  Google Scholar 

  40. Ranalda T (2015) Selective solid phase extraction of uranium using an aminophosphonic acid functionalized composite material. Graduate Student Theses, Dissertations, and Professional Papers 4563

  41. Perlova OV, Dzyazko YS, Perlova NO, Sazonova VF, Halutska IY (2017) Removal of uranyl cations from iron-containing solutions using composite sorbents based on polymer matrix. Chem Phys Technol Surf 8(1):30–43

    CAS  Google Scholar 

  42. Gaffney JS, Marley NAJ (2020) Chemistry of environmental systems fundamental principles and analytical methods. Wiley

    Google Scholar 

  43. Al-Adaileh N. F. (2020) The siloxane sol–gel matrix impregnated organic moiety: environmental application vs. surface-complex reaction mechanism. M.Sc. Thesis, Department of Chemistry, Mutah University

  44. Al-Mazaydeh HA. (2020) Utilization of silica gel functionalized organic entities for the environmental applications: physiochemical study. M.Sc. Thesis, Department of Chemistry, Mutah University

  45. Al-Qaisi W M. ( 2021) Encapsulation of organic–inorganic hybrid aerogel/xerogel by an approach for reducing the contaminant in water. M.Sc. Thesis, Department of Chemistry, Mutah University

  46. AlMahameed A A (2021) Tris(2-aminoethyl)amine incorporated into Xerogel Silica network for the removal of heavy metal ion from water. M.Sc. thesis, Department of Chemistry, Mutah University

  47. Sloop JC, Bumgardner CL, Gary Washington W, Loehle D, Sankar SS, Lewis AB (2006) Keto–enol and enol–enol tautomerism in trifluoromethyl-b-diketones. J Fluorine Chem 127:780–786

    Article  CAS  Google Scholar 

  48. Al-Anber M, Daoud H, Lang H, Ruffer T (2011) 3D-supermolecular structure and electronic absorption of uranyl β-diketone [UO2(tfa)2(L)] (L = H2O, OHCH2CH3) complex. J Mol Struct 997:1–6

    Article  CAS  Google Scholar 

  49. Al-Anber M (2013) Synthesis and thermal properties of nickel β-diketonate polymers. Oriental J Chem 29(3):829–836

    Article  CAS  Google Scholar 

  50. Jaroniec CP, Gilpin RK, Jaroniec M (1997) Adsorption and thermogravimetric studies of silica-based amide bonded phases. J Phys Chem B 101:6861–6866

    Article  CAS  Google Scholar 

  51. Visakh PN, AraoY (2015) Thermal degradation of polymer blends composites and nano composites. Springer International Publishing, pp 1–16

  52. Conradie MM, Muller AJ, Conradie J (2008) Thienyl-containing β-diketones: synthesis, characterization, crystal structure and keto-enol kinetics. S Afr J Chem 61:13–21

    CAS  Google Scholar 

  53. Ayata S, Aydinci S, Merdivan M et al (2010) Sorption of uranium using silica gel with benzoylthiourea derivatives. J Radioanal Nucl Chem 285:525–529

    Article  CAS  Google Scholar 

  54. Bagherifam S, Lakzian A, Ahmadi SJ, Rahimi MF, Halajnia A (2010) Uranium removal from aqueous solutions by wood powder and wheat straw. J Radioanal Nucl Chem 283:289–296

    Article  CAS  Google Scholar 

  55. Xie Y et al (2019) Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Progr Mater Sci 103:180–234

    Article  CAS  Google Scholar 

  56. Fan QH, Hao LM, Wang CL, Zheng Z, Liu CL, Wu WS (2014) The adsorption behavior of U(VI) on granite. Environ Sci Proc Impacts 16:534

  57. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  58. Freundlich HMF (1906) Zeitschrift fur Physikalische Chemie (Leipzig) 57A:385

    Google Scholar 

  59. Li X, Han C, Zhu W, Ma W, Luo Y, Zhou Y, Yu J, Wei K (2014) Cr(VI) Removal from aqueous by adsorption on amine-functionalized mesoporous Silica prepared from Silica Fume. J Chem 2014:1

    Google Scholar 

  60. Igberase E, Osifo P, Ofomaja A (2017) The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: equilibrium, kinetic, thermodynamic, and desorption studies. Int J Anal Chem 2017:1

    Article  CAS  Google Scholar 

  61. Nakanishi K, Tomitaa M, Kato K (2015) Synthesis of amino-functionalized mesoporous silica sheets and their application for metal ion capture. J Asian Ceram Soc 3:70

    Article  Google Scholar 

  62. Al-Anber MA, Al-Momani IF, Zaitoun MA, Al-Qaisi W (2020) Inorganic silica gel functionalized tris(2-aminoethyl)amine moiety for capturing aqueous uranium (VI) ion. J Radioanal Nucl Chem 325:605–623

    Article  CAS  Google Scholar 

  63. Al-Anber MA (2011) In: Moreno-Pirajan JC (ed) Thermodynamics-interaction studies-solids, liquids and gases. InTech, Rijeka, p 737

  64. Al-Anber MA, Al-Anber ZA, Al-Momani I, Al-Momani F, Abu-Salem Q (2014) The performance of Defatted Jojoba Seeds for the removal of toxic high concentration of the aqueous ferric ion. Desalin Water Treat 52(1–3):293–304

    Article  CAS  Google Scholar 

  65. Zaitoun MA, Al-Anber MA, Al Momani IF (2020) Sorption and removal aqueous iron(III) ion by tris(2-aminoethyl)amine moiety functionalized silica gel. Int J Environ Anal Chem 100(13):1446–1467

    Article  CAS  Google Scholar 

  66. Lagergren SZ (1898) theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsademiens, Handlingar 24:1–39

  67. Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742

    Article  CAS  Google Scholar 

  68. Ho YS, Ofomaja AE (2006) Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. J Hazard Mater 129:137–142

    Article  CAS  PubMed  Google Scholar 

  69. Ho YS, Ng JCY, McKay G (2001) Removal of lead (II) from effluents by sorption on peat using second-order kinetics. Sep Sci Technol 36:241

    Article  CAS  Google Scholar 

  70. Yin X, Bai J, Fan F, Cheng W, Tian W, Wang Y, Qin Z (2015) Amidoximed silica for uranium(VI) sorption from aqueous solution. J Radioanal Nucl Chem 303:2135–2142

    CAS  Google Scholar 

  71. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60

    Article  Google Scholar 

  72. Al-Anber M, Stein T, Vatsadze S, Lang H (2005) Organometallic π-tweezers incorporating pyrazine- and pyridine-based bridging units. Inorg Chim Acta 358(1):50–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Al-Anber and his coauthors would like to express their sincere thanks and appreciation to the Jordanian Atomic Energy Authority for the efforts they made in analyzing the real and model samples using the ICP-MS instrument, and thanks, in particular, goes to Dr. Al-Drabee L. and Ms. Mona Al Sheikh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Al-Anber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Anber, M.A., Al-Adaileh, N., Al-Momani, I.F. et al. Encapsulation of 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione into the silica gel matrix for capturing uranium(VI) ion species. J Radioanal Nucl Chem 329, 865–887 (2021). https://doi.org/10.1007/s10967-021-07811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07811-y

Keywords

Navigation