Skip to main content
Log in

The dependence of 90Y sorption on nanodiamonds on sizes of their aggregates in water solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Today nanomaterials, including carbon ones, considered to be promising radionuclide carriers for nuclear medicine. We previously determined that nanodiamonds (NDs) have the best sorption properties in comparison to other carbon nanomaterials for the range of medical radionuclides including 90Y. At the same time, it was shown that the surface composition of NDs does not influence sorption and desorption for this isotope. In this work the influence of aggregate sizes of NDs and ζ-potential of their surface in water solutions on their sorption and desorption is studied, using 90Y as an example. It was determined that with the increase in aggregate sizes and decrease in ζ-potential the sorption decreases, which lets specify the mechanism of binding of 90Y to NDs. It was shown that creation of suspension with determined sizes of particles is an important task for the future use of NDs as medical radionuclide carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bahadori SR, Mulgaonkar A, Hart R et al (2021) Radiolabeling strategies and pharmacokinetic studies for metal based nanotheranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 13:1–44. https://doi.org/10.1002/wnan.1671

    Article  CAS  Google Scholar 

  2. Siafaka PI, Okur N, Karantas ID et al (2021) Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 16:24–46. https://doi.org/10.1016/j.ajps.2020.03.003

    Article  PubMed  Google Scholar 

  3. Abd Elkodous M, El-Sayyad GS, Abdelrahman IY et al (2019) Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B Biointerfaces 180:411–428. https://doi.org/10.1016/j.colsurfb.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  4. Rojas S, Gispert JD, Martín R et al (2011) Biodistribution of amino-functionalized diamond nanoparticles. in vivo studies based on 18F radionuclide emission. ACS Nano 5:5552–5559. https://doi.org/10.1021/nn200986z

    Article  CAS  PubMed  Google Scholar 

  5. Hong SY, Tobias G, Al-Jamal KT et al (2010) Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater 9:485–490. https://doi.org/10.1038/nmat2766

    Article  CAS  PubMed  Google Scholar 

  6. Chen L, Zhong X, Yi X et al (2015) Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 66:21–28. https://doi.org/10.1016/j.biomaterials.2015.06.043

    Article  CAS  PubMed  Google Scholar 

  7. Zhang S, Yang K, Feng L, Liu Z (2011) In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 49:4040–4049. https://doi.org/10.1016/j.carbon.2011.05.056

    Article  CAS  Google Scholar 

  8. Vardharajula S, Ali SZ, Tiwari PM et al (2012) Functionalized carbon nanotubes: biomedical applications. Int J Nanomed 7:5361–5374. https://doi.org/10.2147/IJN.S35832

    Article  CAS  Google Scholar 

  9. Hartman KB, Hamlin DK, Wilbur DS, Wilson LJ (2007) 211AtCl@US-tube nanocapsules: a new concept in radiotherapeutic-agent design. Small 3:1496–1499. https://doi.org/10.1002/smll.200700153

    Article  CAS  PubMed  Google Scholar 

  10. Rosenblat TL, McDevitt MR, Mulford DA et al (2010) Sequential cytarabine and α-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin Cancer Res 16:5303–5311. https://doi.org/10.1158/1078-0432.CCR-10-0382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kamkaew A, Ehlerding EB, Cai W (2019) Radiopharmaceutical chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-98947-1

    Book  Google Scholar 

  12. Jeon J (2019) Review of therapeutic applications of radiolabeled functional nanomaterials. Int J Mol Sci 20:2323. https://doi.org/10.3390/ijms20092323

    Article  CAS  PubMed Central  Google Scholar 

  13. Qi W, Li Z, Bi J et al (2012) Biodistribution of co-exposure to multi-walled carbon nanotubes and nanodiamonds in mice. Nanoscale Res Lett 7:1–9. doi:https://doi.org/10.1186/1556-276X-7-473

    Article  CAS  Google Scholar 

  14. Peltek OO, Muslimov AR, Zyuzin MV, Timin AS (2019) Current outlook on radionuclide delivery systems: from design consideration to translation into clinics. J Nanobiotechnol 17:1–34. https://doi.org/10.1186/s12951-019-0524-9

    Article  Google Scholar 

  15. Ruggiero A, Villa CH, Holland JP et al (2010) Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomed 5:783–802. https://doi.org/10.2147/IJN.S13300

    Article  CAS  Google Scholar 

  16. Jiang DW, Peng C, Sun YH et al (2015) Study on technetium-99m labeling of graphene oxide nanosheets through click chemistry-99mTc labeling of graphene oxide nanosheets. Nucl Sci Tech 26:1–5. https://doi.org/10.13538/j.1001-8042/nst.26.040301

    Article  Google Scholar 

  17. Jaymand M, Davatgaran Y, Rezaei A, Derakhshankhah H (2021) Radiolabeled carbon-based nanostructures: new radiopharmaceuticals for cancer therapy? Coord Chem Rev 440:213974. https://doi.org/10.1016/j.ccr.2021.213974

    Article  CAS  Google Scholar 

  18. Kazakov AG, Garashchenko BL, Yakovlev RY et al (2020) An experimental study of sorption/desorption of selected radionuclides on carbon nanomaterials: a quest for possible applications in future nuclear medicine. Diam Relat Mater 104:107752. https://doi.org/10.1016/j.diamond.2020.107752

    Article  CAS  Google Scholar 

  19. Kazakov AG, Garashchenko BL, Babenya JS et al (2020) Nanodiamonds and carbon nanotubes as perspective carriers of bismuth isotopes for nuclear medicine. In: RAD Conference Proceedings, pp 1–6

  20. Kazakov AG, Garashchenko BL, Yakovlev RY et al (2020) Generator of Actinium-228 and a study of the sorption of Actinium by carbon nanomaterials. Radiochemistry 62:592–598. https://doi.org/10.1134/S1066362220050057

    Article  CAS  Google Scholar 

  21. Kazakov AG, Garashchenko BL, Ivanova MK et al (2020) Carbon nanomaterials for sorption of 68Ga for potential using in positron emission tomography. Nanomaterials 10:1090. https://doi.org/10.3390/nano10061090

    Article  CAS  PubMed Central  Google Scholar 

  22. Kazakov AG, Babenya JS, Ivanova MK et al (2021) Study of 90Y Sorption by nanodiamonds as potential carriers in radiopharmaceuticals. Radiochemistry (in press)

  23. Ma J, Wang C, Xi W et al (2021) Removal of radionuclides from aqueous solution by manganese dioxide-based nanomaterials and mechanism research: a review. ACS ES&T Eng 1:685–705. https://doi.org/10.1021/acsestengg.0c00268

    Article  CAS  Google Scholar 

  24. Liu X, Pang H, Liu X et al (2021) Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation 2:100076. https://doi.org/10.1016/j.xinn.2021.100076

    Article  Google Scholar 

  25. Pichestapong P, Sriwiang W, Injarean U (2016) Separation of yttrium-90 from strontium-90 by extraction chromatography using combined Sr Resin and RE Resin. Energy Procedia 89:366–372. https://doi.org/10.1016/j.egypro.2016.05.048

    Article  CAS  Google Scholar 

  26. Qiu M, Wang M, Zhao Q et al (2018) XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate. Chemosphere 201:764–771. https://doi.org/10.1016/j.chemosphere.2018.03.057

    Article  CAS  PubMed  Google Scholar 

  27. Qiu M, Liu Z, Wang S, Hu B (2020) The photocatalytic reduction of U(VI) into U(IV) by ZIF-8/g-C3N4 composites at visible light. Environ Res 196:110349. https://doi.org/10.1016/j.envres.2020.110349

    Article  CAS  PubMed  Google Scholar 

  28. Hu B, Wang H, Liu R, Qiu M (2021) Highly efficient U(VI) capture by amidoxime/carbon nitride composites: Evidence of EXAFS and modeling. Chemosphere 274:129743. https://doi.org/10.1016/j.chemosphere.2021.129743

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was written according to state task of GEOKHI RAS № 0137-2019-0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia S. Babenya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenya, J.S., Kazakov, A.G., Ekatova, T.Y. et al. The dependence of 90Y sorption on nanodiamonds on sizes of their aggregates in water solutions . J Radioanal Nucl Chem 329, 1027–1031 (2021). https://doi.org/10.1007/s10967-021-07808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07808-7

Keywords

Navigation