Skip to main content
Log in

Potential application of aluminum phosphate binder in the treatment of waste containing strontium: effects of SrO content on structures and leaching stabilities of aluminum phosphate solidified systems

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Solidification of radioactive waste containing strontium is a significant procedure in the nuclear waste treatment and disposal. In this research, structure evolution and leaching stability characteristics of aluminum phosphate binder matrix doped with different SrO contents are characterized. The results indicate that the change of SrO content leads to phase transformation of solidified samples. The significance of this research is that aluminum phosphate binder solidified system presents a high load capacity for SrO (SrO content of 50 wt%) as well as good leaching stability (normalized leaching rate 1.01 × 10−4 g m−2 d−1 after 42 days) for solidified sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim KH, Lee SY, Ammons JT (1990) Immobilization of radioactive strontium in contaminated soils by phosphate treatment. MRS (OPL) Arch 212:633

    Article  Google Scholar 

  2. Kashparov V, Salbu B, Levchuk S, Protsak V, Maloshtan I, Simonucci C, Courbet C, Nguyen HL, Sanzharova N, Zabrotsky V (2019) Environmental behaviour of radioactive particles from Chernobyl. J Environ Radioact 208:106025

    Article  PubMed  Google Scholar 

  3. Ban-Nai T, Muramatsu Y (2002) Transfer factors of radioactive Cs, Sr, Mn, Co and Zn from Japanese soils to root and leaf of radish. J Environ Radioactiv 63:251–264

    Article  CAS  Google Scholar 

  4. Kuno M, Hamada M (2017) Radioactive waste treatment and disposal technique, earthquake engineering for nuclear facilities. Springer, Singapore

    Google Scholar 

  5. Guangren Q, Darren DS, Joo HT (2001) New aluminium-rich alkali slag matrix with clay minerals for immobilizing simulated radioactive Sr and Cs waste. J Nucl Mater 299:199–204

    Article  Google Scholar 

  6. Guangren Q, Yuxiang L, Facheng Y, Rongming S (2002) Improvement of metakaolin on radioactive Sr and Cs immobilization of alkali-activated slag matrix. J Hazard Mater 92:289–300

    Article  PubMed  Google Scholar 

  7. Bar-Nes G, Klein-Bendavid O, Chomat L, Mace N, Arbel-Haddad M, Poyet S (2018) Sr immobilization in irradiated Portland cement paste exposed to carbonation. Cem Concr Res 107:152–162

    Article  CAS  Google Scholar 

  8. Cappelletti P, Rapisardo G, Gennaro BD, Colella A, Langella A, Graziano SF, Bish DL, Gennaro MD (2011) Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites. J Nucl Mater 414:451–457

    Article  CAS  Google Scholar 

  9. Jaffe JE, Van Ginhoven RM, Jiang W (2012) Interstitial and substitutional zirconium in SrTiO3. Comp Mater Sci 53:153

    Article  CAS  Google Scholar 

  10. Weimin B, Shiping X, Liyu L, Chongli S, Jirong Z, Yongjun Z (2002) Solidification of Sr-containing stripping solutions in titanate ceramics. J Nucl Mater 301:237–241

    Article  Google Scholar 

  11. Ruizhu Z, Yongwei G, Jiansheng W, Luke L (2011) Leaching properties of immobilization of HLW into SrTiO3 ceramics. ICAMR Trans Tech Publ 332:1807–1811

    Google Scholar 

  12. Bohre A, Shrivastava OP (2013) Crystal chemistry of immobilization of divalent Sr in ceramic matrix of sodium zirconium phosphate. J Nucl Mater 433:486–493

    Article  CAS  Google Scholar 

  13. Hashimoto C, Nakajima Y, Terada T, Itoh K, Nakayama S (2011) Effect of the preparation conditions of zirconium phosphate on the characteristics of Sr immobilization. J Nucl Mater 408:231–235

    Article  CAS  Google Scholar 

  14. Hashimoto C, Nakayama S (2010) Immobilization of Cs and Sr to HZr2(PO4)3 using an autoclave. J Nucl Mater 396:197–201

    Article  CAS  Google Scholar 

  15. Nakayama S, Itoh K (2003) Immobilization of strontium by crystalline zirconium phosphate. J Eur Ceram Soc 23:1047–1052

    Article  CAS  Google Scholar 

  16. Đorđević MP, Maletaškić J, Stanković N, Babić B, Yoshida K, Yano T, Matović B (2018) In-situ immobilization of Sr radioactive isotope using nanocrystalline hydroxyapatite. Ceram Int 44:1771–1777

    Article  Google Scholar 

  17. Matovic B, Djordjevic MP, Maletaskic J, Yoshida K, Yano T (2017) Preparation and properties of hydroxyapatite nano-spheres for immobilization of Sr isotopes. Energy Proc 131:140–145

    Article  CAS  Google Scholar 

  18. Kumar SP, Buvaneswari G (2013) Synthesis of apatite phosphates containing Cs+, Sr2+ and RE3+ ions and chemical durability studies. Mater Res Bull 48:324–332

    Article  CAS  Google Scholar 

  19. Xu Z, Jiang Z, Wu D, Peng X, Xu Y, Li N, Qi Y, Li P (2016) Immobilization of strontium-loaded zeolite A by metakaolin based-geopolymer. Ceram Int 5:4434–4439

    Google Scholar 

  20. Bohre A, Avasthi K, Pet’kov VI (2017) Vitreous and crystalline phosphate high level waste matrices: present status and future challenges. J Ind Eng Chem 50:1–14

    Article  CAS  Google Scholar 

  21. Ewing RC, Weber WJ, Clinard FW Jr (1995) Radiation effects in nuclear waste forms for high-level radioactive waste. Prog Nucl Energy 29:63–127

    Article  CAS  Google Scholar 

  22. Burakov BE, Yagovkina MA, Garbuzov VM, Kitsay AA, Zirlin VA (2004) Self-Irradiation of monazite ceramics: contrasting behavior of PuPO4 and (La, Pu) PO4 doped with Pu-238. MRS (OPL) Archive. 824

  23. Boughzala K, Salem EB, Chrifa AB, Gaudin E, Bouzouita K (2007) Synthesis and characterization of strontium–lanthanum apatites. Mater Res Bull 42:1221–1229

    Article  CAS  Google Scholar 

  24. Boughzala K, Gmati N, Bouzouita K, Cherifa AB, Gravereau P (2010) Tude structurale de britholite au césium Sr7La2Cs(PO4)5(SiO4)F2. C R Chim 13:1377–1383

    Article  CAS  Google Scholar 

  25. Park HS, Kim IT, Cho YZ, Eun HC, Lee HS (2008) Stabilization/solidification of radioactive salt waste by using xSiO2-yAl2O3-zP2O5 (SAP) material at molten salt state. Environ Sci Technol 42:9357–9362

    Article  CAS  PubMed  Google Scholar 

  26. Mesko MG, Day DE, Bunker BC (2000) Immobilization of CsCl and SrF in iron phosphate glass. Waste Manage 20:271–278

    Article  CAS  Google Scholar 

  27. Joseph K, Jolley K, Smith R (2015) Iron phosphate glasses: structure determination and displacement energy thresholds, using a fixed charge potential model. J Non-Cryst Solids 411:137–144

    Article  CAS  Google Scholar 

  28. Brow RK (2000) The structure of simple phosphate glasses. J Non-Cryst Solids 26:31–28

    Google Scholar 

  29. Schneider J, Oliveira SL, Nunes LAO, Panepucci H (2003) Local structure of sodium aluminum metaphosphate glasses. J Am Ceram Soc 86:317–324

    Article  CAS  Google Scholar 

  30. Persy VP, Behets GJ, Bervoets AR, De Broe ME, D’HaesePC, (2006) Lanthanum: a safe phosphate binder. Semin Dial 19:195–199

    Article  PubMed  Google Scholar 

  31. Chen D, He L, Shang S (2003) Study on aluminum phosphate binder and related Al2O3–SiC ceramic coating. Mat Sci Eng A 348:29–35

    Article  Google Scholar 

  32. Chen Z, Zhang L, Zhou K (2009) Research progress of phosphate inorganic binder for high temperature resistance. Mater Sci Eng Powder Metall 2:74–82

    Google Scholar 

  33. ASTM Committee (2002) Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: the product consistency test (PCT). ASTM International, West Conshohocken

    Google Scholar 

  34. Abou Neel EA, Chrzanowski W, Valappil SP, O’Dell LA, Pickup DM, Smith ME, Newport RJ, Knowles JC (2009) Doping of a high calcium oxide metaphosphate glass with titanium dioxide. J Non-Cryst Solids 355:991–1000

    Article  CAS  Google Scholar 

  35. Efimov AM (1997) IR fundamental spectra and structure of pyrophosphate glasses along the 2ZnO·P2O5–2Me2O·P2O5 join (Me being Na and Li). J Non-Cryst Solids 209:209–226

    Article  CAS  Google Scholar 

  36. Chipera SJ, Bish DL (1995) Multireflection RIR and intensity normalizations for quantitative analyses: applications to feldspars and zeolites. Powder Diffr 10:47–55

    Article  CAS  Google Scholar 

  37. Bish DL, Post JE (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am Mineral 78:932–940

    CAS  Google Scholar 

  38. Bish DL, Howard SA (1988) Quantitative phase analysis using the Rietveld method. J Appl Crystallogr 21:86–91

    Article  CAS  Google Scholar 

  39. Dias AG, Skakle JMS, Gibson IR, Lopes MA, Santos JD (2005) In situ thermal and structural characterization of bioactive calcium phosphate glass ceramics containing TiO2 and MgO oxides: high temperature—XRD studies. J Non-Cryst Solids 351:810–817

    Article  CAS  Google Scholar 

  40. Rada S, Culea E (2009) FTIR spectroscopic and DFT theoretical study on structure of europium–phosphate–tellurate glasses and glass ceramics. J Mol Struct 929:141–148

    Article  CAS  Google Scholar 

  41. Samuneva B, Tzvetkova P, Gugov I, Dimitro V (1996) Structural studies of phosphate glasses. J Mater Sci Lett 15:2180–2183

    Article  CAS  Google Scholar 

  42. Kim CW, Day DE (2003) Immobilization of Hanford LAW in iron phosphate glasses. J Non-Cryst Solids 331:20–31

    Article  CAS  Google Scholar 

  43. Borovikova EY, Kurazhkovskaya VS, Bykov DM, Oriova AL (2010) Infrared spectroscopy and the structure of La0.33Zr2(PO4)3-Yb0.33Zr2(PO4)3 solid solutions. J Struct Chem 51:40–44

    Article  CAS  Google Scholar 

  44. Karabulut M, Popa A, Borodi G, Stefan R (2015) An FTIR and ESR study of iron doped calcium borophosphate glass-ceramics. J Mol Struct 1101:170–175

    Article  CAS  Google Scholar 

  45. Andrade AA, Lourenço SA, Pilla V, Silva A, Dantas NO (2013) Evidence of phase transition in Nd3+ doped phosphate glass determined by thermal lens spectrometry. Phys. Chem. Chem. Phys. 16(4):1583–1589

    Article  Google Scholar 

  46. Pauling L, Sherman J (1937) The crystal structure of aluminum metaphosphate, Al(PO3)3. Z Krist-Cryst Mater 96:481–487

    Article  CAS  Google Scholar 

  47. Achary SN, Jayakumar OD, Tyagi AK, Kulshresththa SK (2003) Preparation, phase transition and thermal expansion studies on low-cristobalite type Al1 – xGaxPO4 (x = 0.0, 0.20, 0.50, 0.80 and 1.00). J Solid State Chem 176:37–46

    Article  CAS  Google Scholar 

  48. Barbier J, Echard JP (1998) A New refinement of α-Sr2P2O7. Acta Crystallogr C 54:IUC9800070

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the project of Young Talents of China National Nuclear Corporation, the National Natural Science Foundation of China (U1967219), the Fundamental Research Funds for Central Universities (3072020CF1505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaorui Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Hou, C., Zhang, M. et al. Potential application of aluminum phosphate binder in the treatment of waste containing strontium: effects of SrO content on structures and leaching stabilities of aluminum phosphate solidified systems. J Radioanal Nucl Chem 329, 475–484 (2021). https://doi.org/10.1007/s10967-021-07801-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07801-0

Keywords

Navigation