Skip to main content
Log in

Synthesis of analcime from fly ash and its adsorption of Cs+ in aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Analcime zeolite with high crystallinity was successfully synthesized from coal fly ash via synchronous extraction synthesis method. The synthesized zeolite was well characterized by XRD, SEM, and N2 physisorption.The adsorption studies of Cs+ in aqueous solution by the synthesized analcime showed that the theoretical maximum adsorption capacity 121.11 mg/g has been achieved at pH = 6, T = 25 °C and initial concentration of Cs+ solution 100 mg/L. The adsorption data fit well with the Langmuir model and quasi-second-order kinetic model, indicating that cesium was monolayer covered on the surface of the material, and the adsorption process was mainly chemical adsorption. Thermodynamic data indicates that the adsorption process was spontaneous and endothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig.10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36(3):327–363. https://doi.org/10.1016/j.pecs.2009.11.003

    Article  CAS  Google Scholar 

  2. Bhatt A, Priyadarshini S, Acharath Mohanakrishnan A, Abri A, Sattler M, Techapaphawit S (2019) Physical, chemical, and geotechnical properties of coal fly ash: a global review. Case Stud Construct Mater 11:e00263. https://doi.org/10.1016/j.cscm.2019.e00263

    Article  Google Scholar 

  3. Gollakota ARK, Volli V, Shu CM (2019) Progressive utilisation prospects of coal fly ash: a review. Sci Total Environ 672:951–989. https://doi.org/10.1016/j.scitotenv.2019.03.337

    Article  CAS  PubMed  Google Scholar 

  4. Belviso C (2018) State-of-the-art applications of fly ash from coal and biomass: a focus on zeolite synthesis processes and issues. Prog Energy Combust Sci 65:109–135. https://doi.org/10.1016/j.pecs.2017.10.004

    Article  Google Scholar 

  5. Mushtaq F, Zahid M, Bhatti IA, Nasir S, Hussain T (2019) Possible applications of coal fly ash in wastewater treatment. J Environ Manage 240:27–46. https://doi.org/10.1016/j.jenvman.2019.03.054

    Article  CAS  PubMed  Google Scholar 

  6. Rożek P, Król M, Mozgawa W (2019) Geopolymer-zeolite composites: a review. J Clean Prod 230:557–579. https://doi.org/10.1016/j.jclepro.2019.05.152

    Article  CAS  Google Scholar 

  7. Fukasawa T, Horigome A, Tsu T, Karisma AD, Maeda N, Huang A-N, Fukui K (2017) Utilization of incineration fly ash from biomass power plants for zeolite synthesis from coal fly ash by hydrothermal treatment. Fuel Process Technol 167:92–98. https://doi.org/10.1016/j.fuproc.2017.06.023

    Article  CAS  Google Scholar 

  8. Tauanov Z, Azat S (2020) Baibatyrova A (2020) A mini-review on coal fly ash properties, utilization and synthesis of zeolites. Int J Coal Prep Utilizat. https://doi.org/10.1080/19392699.2020.1788545

    Article  Google Scholar 

  9. Tauanov Z, Shah D, Inglezakis V, Jamwal PK (2018) Hydrothermal synthesis of zeolite production from coal fly ash: A heuristic approach and its optimization for system identification of conversion. J Clean Prod 182:616–623. https://doi.org/10.1016/j.jclepro.2018.02.047

    Article  CAS  Google Scholar 

  10. Zhou C, Yan C, Zhou Q, Wang H, Luo W (2016) Producing a synthetic zeolite from secondary coal fly ash. Environ Technol 37(22):2916–2923. https://doi.org/10.1080/09593330.2016.1169320

    Article  CAS  PubMed  Google Scholar 

  11. Hong JLX, Maneerung T, Koh SN, Kawi S, Wang C-H (2017) Conversion of coal fly ash into zeolite materials: synthesis and characterizations, process design, and its cost-benefit analysis. Ind Eng Chem Res 56(40):11565–11574. https://doi.org/10.1021/acs.iecr.7b02885

    Article  CAS  Google Scholar 

  12. Iqbal A, Sattar H, Haider R, Munir S (2019) Synthesis and characterization of pure phase zeolite 4A from coal fly ash. J Clean Prod 219:258–267. https://doi.org/10.1016/j.jclepro.2019.02.066

    Article  CAS  Google Scholar 

  13. Zhu Y, Wang W, Zhang H, Ye X, Wu Z, Wang A (2017) Fast and high-capacity adsorption of Rb+ and Cs+ onto recyclable magnetic porous spheres. Chem Eng J 327:982–991. https://doi.org/10.1016/j.cej.2017.06.169

    Article  CAS  Google Scholar 

  14. Liao H, Li Y, Li H, Li B, Zhou Y, Liu D, Wang X (2020) Efficiency and mechanism of amidoxime-modified X-type zeolite (AO-XZ) for Cs+ adsorption. Chem Phys Lett 741:137084. https://doi.org/10.1016/j.cplett.2019.137084

    Article  CAS  Google Scholar 

  15. Atta AY, Jibril BY, Aderemi BO, Adefila SS (2012) Preparation of analcime from local kaolin and rice husk ash. Appl Clay Sci 61:8–13. https://doi.org/10.1016/j.clay.2012.02.018

    Article  CAS  Google Scholar 

  16. Liu Z, Li L, Shao N, Hu T, Han L, Wang D (2020) Geopolymerization enhanced hydrothermal synthesis of analcime from steel slag and CFBC fly ash and heavy metal adsorption on analcime. Environ Technol 41(14):1753–1765. https://doi.org/10.1080/09593330.2018.1545805

    Article  CAS  PubMed  Google Scholar 

  17. Ge Y-y, Tang Q, Cui X-m, He Y, Zhang J (2014) Preparation of large-sized analcime single crystals using the Geopolymer-Gels-Conversion (GGC) method. Mater Lett 135:15–18. https://doi.org/10.1016/j.matlet.2014.07.122

    Article  CAS  Google Scholar 

  18. Hsiao Y-H, Ho T-Y, Shen Y-H, Ray D (2017) Synthesis of analcime from sericite and pyrophyllite by microwave-assisted hydrothermal processes. Appl Clay Sci 143:378–386. https://doi.org/10.1016/j.clay.2017.04.014

    Article  CAS  Google Scholar 

  19. Liu Z, Zhou Y, Guo M, Lv B, Wu Z, Zhou W (2019) Experimental and theoretical investigations of Cs(+) adsorption on crown ethers modified magnetic adsorbent. J Hazard Mater 371:712–720. https://doi.org/10.1016/j.jhazmat.2019.03.022

    Article  CAS  PubMed  Google Scholar 

  20. Mohammad MH, Habibollah S, Jooybari TF (2012) Development of empirical equation for analcime in the treatment of nuclear waste. Ann Nucl Energy 47:140–145. https://doi.org/10.1016/j.anucene.2012.04.015

    Article  CAS  Google Scholar 

  21. Wang WX, Qiao Y, Li T, Liu S, Zhou J, Yao H, Yang H, Xu M (2017) Improved removal of Cr(VI) from aqueous solution using zeolite synthesized from coal fly ash via mechano-chemical treatment. Asia-Pac J Chem Eng 12(2):259–267. https://doi.org/10.1002/apj.2069

    Article  CAS  Google Scholar 

  22. Makgabutlane B, Nthunya LN, Nxumalo EN, Musyoka NM, Mhlanga SD (2020) Microwave irradiation-assisted synthesis of zeolites from coal fly ash: an optimization study for a sustainable and efficient production process. ACS Omega 5(39):25000–25008. https://doi.org/10.1021/acsomega.0c00931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fukasawa T, Karisma AD, Shibata D, Huang A-N, Fukui K (2017) Synthesis of zeolite from coal fly ash by microwave hydrothermal treatment with pulverization process. Adv Powder Technol 28(3):798–804. https://doi.org/10.1016/j.apt.2016.12.006

    Article  CAS  Google Scholar 

  24. Ojumu TV, Du Plessis PW, Petrik LF (2016) Synthesis of zeolite A from coal fly ash using ultrasonic treatment–A replacement for fusion step. Ultrason Sonochem 31:342–349. https://doi.org/10.1016/j.ultsonch.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  25. Hu YY, Pan C, Zheng X, Hu F, Xu L, Xu G, Jian Y, Peng X (2021) Prediction and optimization of adsorption properties for Cs(+)on NiSiO@NiAlFe LDHs hollow spheres from aqueous solution: Kinetics, isotherms, and BBD model. J Hazard Mater 401:123374. https://doi.org/10.1016/j.jhazmat.2020.123374

    Article  CAS  PubMed  Google Scholar 

  26. Ali MMS, Sami NM, El-Sayed AA (2020) Removal of Cs+, Sr2+ and Co2+ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: kinetics and equilibrium studies. J Radioanal Nucl Chem 324(1):189–201. https://doi.org/10.1007/s10967-020-07067-y

    Article  CAS  Google Scholar 

  27. Sterba JH, Sperrer H, Wallenko F, Welch JM (2018) Adsorption characteristics of a clinoptilolite-rich zeolite compound for Sr and Cs. J Radioanal Nucl Chem 318(1):267–270. https://doi.org/10.1007/s10967-018-6096-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dyer A, Hriljac J, Evans N, Stokes I, Rand P, Kellet S, Harjula R, Moller T, Maher Z (2018) The use of columns of the zeolite clinoptilolite in the remediation of aqueous nuclear waste streams. J Radioanal Nucl Chem 318(3):2473–2491. https://doi.org/10.1007/s10967-018-6329-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rajec P, Macášek F, Féder M, Misaelides P, Šamajová E (2006) Sorption of caesium and strontium on clinoptilolite-and mordenite-containing sedimentary rocks. J Radioanal Nucl Chem 229(1):49–55. https://doi.org/10.1007/BF02389445

    Article  Google Scholar 

  30. El-Naggar MR, El-Kamash AM, El-Dessouky MI, Ghonaim AK (2008) Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J Hazard Mater 154(1–3):963–972

    Article  CAS  Google Scholar 

  31. Choi JH, Lee CH (2019) Adsorption and desorption characteristics of sr, cs, and na ions with na-a zeolite synthesized from coal fly ash in low-alkali condition. J Environ Sci Int 28(6):561–570. https://doi.org/10.5322/JESI.2019.28.6.561

    Article  Google Scholar 

  32. Khandaker S, Toyohara Y, Saha GC, Awual MR, Kuba T (2020) Development of synthetic zeolites from bio-slag for cesium adsorption: Kinetic, isotherm and thermodynamic studies. J Water Process Eng 33:101055. https://doi.org/10.1016/j.jwpe.2019.101055

    Article  Google Scholar 

  33. Metwally SS, Ahmed IM, Rizk HE (2017) Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution. J Alloy Compd 709:438–444. https://doi.org/10.1016/j.jallcom.2017.03.156

    Article  CAS  Google Scholar 

  34. Eljamal O, Shubair T, Tahara A, Sugihara Y, Matsunaga N (2019) Iron based nanoparticles-zeolite composites for the removal of cesium from aqueous solutions. J Mol Liq 277:613–623. https://doi.org/10.1016/j.molliq.2018.12.115

    Article  CAS  Google Scholar 

  35. Xia M, Zheng X, Du M, Wang Y, Ding A, Dou J (2018) The adsorption of Cs(+) from wastewater using lithium-modified montmorillonite caged in calcium alginate beads. Chemosphere 203:271–280. https://doi.org/10.1016/j.chemosphere.2018.03.129

    Article  CAS  PubMed  Google Scholar 

  36. Huang Q, Zou L-X, Lan P, Yang C, Jing Z-Y, Xu Y, Xu J (2019) Synthesis of the Y nanometer zeolites from fly ash and its adsorption models for aqueous Cs+ ions. J Radioanal Nucl Chem 323(1):65–72. https://doi.org/10.1007/s10967-019-06894-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Open Foundation of the State Key Laboratory of Nuclear Resources and Environment (2020NRE32) of East China University of Technology and University Innovation Team Development Program. Thanks to Fengcheng thermal power plant for its help and cooperation in collecting and using fly ash in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-xia ZOU.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Ry., ZOU, Lx., Huang, Q. et al. Synthesis of analcime from fly ash and its adsorption of Cs+ in aqueous solution. J Radioanal Nucl Chem 329, 103–113 (2021). https://doi.org/10.1007/s10967-021-07799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07799-5

Keywords

Navigation