Skip to main content
Log in

The enhanced photocatalytic reduction of uranium(VI) by ZnS@g-C3N4 heterojunctions under sunlight

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The photocatalytic reduction of soluble \({\text{UO}}_{2}^{2 + }\) from radioactive wastewater is becoming an effective method to reduce radioactive pollution, while available catalysts are considerable limitation. Herein, the ZnS@g-C3N4 (ZSGCN) heterojunctions complexes were compounded as catalysts to reduce \({\text{UO}}_{2}^{2 + }\). The results from TEM, XRD, XPS, EIS, DRS and PL showed that the ZnS nanoparticles combined with graphite carbon nitride (GCN), which is the construction of heterojunctions broadened the absorption range of sunlight. The ZSGCN-5 presented the optimal photocatalytic reduction activity to \({\text{UO}}_{2}^{2 + }\), which was 4.34 times than that of pristine GCN. The ZSGCN-5 heterojunction becomes a promising photocatalyst for radioactive environment remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cui D, Low J, Spahiu K (2011) Environmental behaviors of spent nuclear fuel and canister materials. Energy Environ Sci 4(7):2537–2545

    Article  CAS  Google Scholar 

  2. Zhang Z, Dong Z, Wang X (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387

    Article  CAS  Google Scholar 

  3. Han X, Wang Y, Cao X (2019) Adsorptive performance of ship-type nano-cage polyoxometalates for U(VI) in aqueous solution. Appl Surf Sci 484:1035–1040

    Article  CAS  Google Scholar 

  4. Ewing RC (2008) Nuclear fuel cycle: environmental impact. MRS Bull 33(4):338–340

    Article  CAS  Google Scholar 

  5. Le Berre S, Bretesché S (2019) Having a high-risk job: Uranium miners’ perception of occupational risk in France. Extr Ind Soc 7:568

    Google Scholar 

  6. Li J, Zhang Y (2012) Remediation technology for the uranium contaminated environment: a review. Procedia Environ Sci 13:1609–1615

    Article  CAS  Google Scholar 

  7. Wei HZ, Lei Z, Run PH (2009) Removal of uranium(VI) by fixed bed ion-exchange column using natural zeolite coated with manganese oxide. Chin J Chem Eng 17(4):585–593

    Article  Google Scholar 

  8. Kryvoruchko AP, Yurlova LY, Atamanenko ID (2004) Ultrafiltration removal of U(VI) from contaminated water. Desalination 162:229–236

    Article  CAS  Google Scholar 

  9. Anirudhan T, Radhakrishnan P (2009) Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater. J Environ Radioact 100(3):250–257

    Article  CAS  PubMed  Google Scholar 

  10. Dong Z, Zhang Z, Zhou R (2020) Construction of oxidized millimeter-sized hierarchically porous carbon spheres for U(VI) adsorption. Chem Eng J 386:123944

    Article  CAS  Google Scholar 

  11. Zhang Z, Liu J, Cao X (2015) Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U (VI)–CO3/Ca–U(VI)–CO3 complexes. J Hazard Mater 300:633–642

    Article  CAS  PubMed  Google Scholar 

  12. Liu C, Dong Z, Yu C (2021) Study on photocatalytic performance of hexagonal SnS2/g-C3N4 nanosheets and its application to reduce U(VI) in sunlight. Appl Surf Sci 537:147754

    Article  CAS  Google Scholar 

  13. Endrizzi F, Leggett CJ, Rao L (2016) Scientific basis for efficient extraction of uranium from seawater. I: understanding the chemical speciation of uranium under seawater conditions. Ind Eng Chem Res 55(15):4249–4256

    Article  CAS  Google Scholar 

  14. Mehio N, Johnson JC, Dai S (2015) Theoretical study of the coordination behavior of formate and formamidoximate with dioxovanadium(V) cation: Implications for selectivity towards uranyl. Phys Chem Chem Phys 17(47):31715–31726

    Article  CAS  PubMed  Google Scholar 

  15. Zhang R, Chen C, Li J (2015) Preparation of montmorillonite@carbon composite and its application for U(VI) removal from aqueous solution. Appl Surf Sci 349:129–137

    Article  CAS  Google Scholar 

  16. Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2(8):1596–1606

    Article  CAS  Google Scholar 

  17. Dong Z, Wu Y, Thirugnanam N (2018) Double z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production. Appl Surf Sci 430:293–300

    Article  CAS  Google Scholar 

  18. Yu W, Xu D, Peng T (2015) Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct z-scheme mechanism. J Mater Chem A 3(39):19936–19947

    Article  CAS  Google Scholar 

  19. Huang W, Liu N, Zhang X (2017) Metal organic framework g-C3N4/mil-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Appl Surf Sci 425:107–116

    Article  CAS  Google Scholar 

  20. Chen X, Zhou B, Yang S (2015) In situ construction of an SnO2/g-C3N4 heterojunction for enhanced visible-light photocatalytic activity. RSC Adv 5(84):68953–68963

    Article  CAS  Google Scholar 

  21. Fu J, Zhu B, Jiang C (2017) Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13(15):1603938

    Article  CAS  Google Scholar 

  22. Bai X, Wang L, Zong R (2013) Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J Phys Chem C 117(19):9952–9961

    Article  CAS  Google Scholar 

  23. Ma X, Chen C, Hu J (2019) Evidence of direct z-scheme g-C3N4/WS2 nanocomposite under interfacial coupling: first-principles study. J Alloys Compd 788:1–9

    Article  CAS  Google Scholar 

  24. Maarisetty D, Baral SS (2019) Synergistic effect of dual electron-cocatalyst modified photocatalyst and methodical strategy for better charge separation. Appl Surf Sci 489:930–942

    Article  CAS  Google Scholar 

  25. Chen T, Song C, Fan M (2017) In-situ fabrication of CuS/g-C3N4 nanocomposites with enhanced photocatalytic H2-production activity via photoinduced interfacial charge transfer. Int J Hydrogen Energy 42(17):12210–12219

    Article  CAS  Google Scholar 

  26. Kim WJ, Jang E, Park TJ (2017) Enhanced visible-light photocatalytic activity of ZnS/g-C3N4 type-II heterojunction nanocomposites synthesized with atomic layer deposition. Appl Surf Sci 419:159–164

    Article  CAS  Google Scholar 

  27. Yan Y, Yang M, Wang C (2019) Defected zns/bulk g-C3N4 heterojunction with enhanced photocatalytic activity for dyes oxidation and Cr(VI) reduction. Colloids Surf. A 582:123861

    Article  CAS  Google Scholar 

  28. Chen P, Meng L-H, Chen L (2019) Double-shell and flower-like ZnS–C3N4 derived from in situ supramolecular self-assembly for selective aerobic oxidation of amines to imines. ACS Sustain Chem Eng 7(16):14203–14209

    Article  CAS  Google Scholar 

  29. Wei B, Liang H, Wang R (2018) One-step synthesis of graphitic-C3N4/ZnS composites for enhanced supercapacitor performance. J Energy Chem 27(2):472–477

    Article  Google Scholar 

  30. Xue B, Jiang HY, Sun T (2016) ZnS@g-C3N4 composite photocatalysts: in situ synthesis and enhanced visible-light photocatalytic activity. Catal Lett 146(10):2185–2192

    Article  CAS  Google Scholar 

  31. Jiang XH, Xing QJ, Luo XB (2018) Simultaneous photoreduction of uranium(VI) and photooxidation of arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl Catal B 228:29–38

    Article  CAS  Google Scholar 

  32. Zhang Z, Dong Z, Wang X (2018) Ordered mesoporous polymer–carbon composites containing amidoxime groups for uranium removal from aqueous solutions. Chem Eng J 341:208–217

    Article  CAS  Google Scholar 

  33. Li K, Huang Z, Zhu S (2019) Removal of Cr(VI) from water by a biochar-coupled g-C3N4 nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems. Appl Catal B 243:386–396

    Article  CAS  Google Scholar 

  34. Zhang Y, Wen R, Guo D (2016) One-step facile fabrication and photocatalytic activities of ZnS@g-C3N4 nanocomposites from sulfatotris(thiourea) zinc(II) complex. Appl Organomet Chem 30(3):160–166

    Article  CAS  Google Scholar 

  35. Lam SM, Sin JC, Mohamed AR (2016) A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Mater Sci Semicond Process 47:62–84

    Article  CAS  Google Scholar 

  36. Zhang Z, Liu C, Dong Z (2020) Synthesis of flower-like MoS2/g-C3N4 nanosheet heterojunctions with enhanced photocatalytic reduction activity of uranium(VI). Appl Surf Sci 520:146352

    Article  CAS  Google Scholar 

  37. Li P, Wang J, Peng T (2019) Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI). Appl Surf Sci 483:670–676

    Article  CAS  Google Scholar 

  38. Lu C, Zhang P, Jiang S (2017) Photocatalytic reduction elimination of \({\text{UO}}_{2}^{2 + }\) pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl Catal B 200:378–385

    Article  CAS  Google Scholar 

  39. Li P, Wang J, Wang Y (2019) Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem Eng J 365:231–241

    Article  CAS  Google Scholar 

  40. Ke L, Li P, Wu X (2017) Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of \({\text{UO}}_{2}^{2 + }\) under visible light. Appl Catal B Environ 205:319–326

    Article  CAS  Google Scholar 

  41. Lu C, Chen R, Wu X (2016) Boron doped g-C3N4 with enhanced photocatalytic \({\text{UO}}_{2}^{2 + }\) reduction performance. Appl Surf Sci 360:1016–1022

    Article  CAS  Google Scholar 

  42. Ma L, Fan H, Fu K (2017) Protonation of graphitic carbon nitride (g-C3N4) for an electrostatically self-assembling carbon@g-C3N4 core–shell nanostructure toward high hydrogen evolution. ACS Sustain Chem Eng 5(8):7093–7103

    Article  CAS  Google Scholar 

  43. Song S, Lu C, Wu X (2018) Strong base g-C3N4 with perfect structure for photocatalytically eliminating formaldehyde under visible-light irradiation. Appl Catal B 227:145–152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21866004, 21866003, 22066003, 22076022, 21906019), the Defense Industrial Technology Development Program (JCKY2019401C004), the Open Fund of Jiangxi Province Key Laboratory of Synthetic Chemistry (JXSC202012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Zhang, Mingguang Liu or Yunhai Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Zhang, Z., Cheng, Z. et al. The enhanced photocatalytic reduction of uranium(VI) by ZnS@g-C3N4 heterojunctions under sunlight. J Radioanal Nucl Chem 329, 1125–1133 (2021). https://doi.org/10.1007/s10967-021-07784-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07784-y

Keywords

Navigation