Skip to main content
Log in

Fe3O4-modified sewage sludge biochar for U(VI) removal from aqueous solution: performance and mechanism

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sewage sludge-derived biochar (SSB) was prepared at 600 °C pyrolysis temperature and modified by co-precipitation with Fe3O4 to obtain Fe3O4@SSB. The adsorption process of U(VI) onto the Fe3O4@SSB was accurately described by the pseudo-second order and Langmuir isotherm model. The maximum removal capacity of U(VI) was 149.15 mg/g at 303 K and initial pH of 4.0 by Langmuir isotherm model analysis. The removal mechanisms included complexation, ion exchange, reduction and electrostatic attraction. The U(VI) removal efficiency by Fe3O4@SSB remained above 90% after five adsorption–desorption. This work provided a reference for sewage sludge resource utilization and biochar modification for uranium-containing wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alam MS, Gorman-Lewis D, Chen N, Safari S, Baek K, Konhauser KO, Alessi DS (2018) Mechanisms of the removal of U(VI) from aqueous solution using biochar: a combined spectroscopic and modeling approach. Environ Sci Technol 52:13057–13067

    Article  CAS  PubMed  Google Scholar 

  2. Chen AW, Shang C, Shao JH, Zhang JC, Huang HL (2017) The application of iron-based technologies in uranium remediation: a review. Sci Total Environ 575:1291–1306

    Article  CAS  PubMed  Google Scholar 

  3. Jin J, Li SW, Peng XQ, Sun K, Wang XK (2018) HNO3 modified biochars for uranium(VI) removal from aqueous solution. Bioresour Technol 256:247–253

    Article  CAS  PubMed  Google Scholar 

  4. Li FB, Li XY, Cui P (2018) Adsorption of U(VI) on magnetic iron oxide/Paecilomyces catenlannulatus composites. J Mol Liq 252:52–57

    Article  CAS  Google Scholar 

  5. Liatsoua I, Pashalidisa I, Doscheb C (2020) Cu(II) adsorption on 2-thiouracil-modified Luffa cylindrica biochar fibres from artificial and real samples, and competition reactions with U(VI). J Hazard Mater 383:120950

    Article  Google Scholar 

  6. Liu X, Sun J, Duan SX, Wang YA, Hayat T, Alsaedi A, Wang CM, Li JX (2017) A valuable biochar from poplar catkins with high adsorption capacity for both organic pollutants and inorganic heavy metal ions. Sci Rep 7:1–12

    Google Scholar 

  7. Mishra V, Sureshkumar MK, Gupta N, Kaushik CP (2017) Study on sorption characteristics of uranium onto biochar derived from eucalyptus wood. Water Air Soil Pollut 228:309–323

    Article  Google Scholar 

  8. Pang HW, Diao ZD, Wang XK, Ma Y, Yu SJ (2019) Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater. Chem Eng J 366:368–377

    Article  CAS  Google Scholar 

  9. Wang X, Feng JH, Cai YW, Fang M, Kong MG, Alsaedi A, Hayat T, Tan XL (2020) Porous biochar modified with polyethyleneimine (PEI) for effective enrichment of U(VI) in aqueous solution. Sci Total Environ 708:134575

    Article  CAS  PubMed  Google Scholar 

  10. Xiang W, Zhang XY, Chen JJ, Zou WX, He F, Hu X, Tsang DCW, Ok YS, Gao B (2020) Biochar technology in wastewater treatment: a critical review. Chemosphere 252:126539

    Article  CAS  PubMed  Google Scholar 

  11. Yi YQ, Huang ZX, Lu BZ, Xian JY, Tsang PE, Cheng W, Fang JZ, Fang ZQ (2020) Magnetic biochar for environmental remediation: a review. Bioresou Technol 298:122468

    Article  CAS  Google Scholar 

  12. Mo GH, Xie SB, Zeng TT, Liu YJ, Cai PL (2020) The efficiency and mechanism of U(VI) removal from acidic wastewater by sewage sludge-derived biochar. CIESC Journal 71:2354–2364

    Google Scholar 

  13. Song S, Gu PC, Chen ZS, Wang XX, Zhang R, Wen T (2019) Removal of U(VI) by acid-oxidized biochar: batch experiments and spectroscopy study. Sci Sin Chim 49:155–164

    Article  Google Scholar 

  14. Li N, Yin ML, Yang ST, Liu J, Li X (2019) Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: a comparison between raw and modified biochar. Sci Total Environ 697:906–915

    Article  Google Scholar 

  15. Guilhena SN, Mašekb O, Ortiza N, Izidoroa JC, Fungaro DA (2019) Pyrolytic temperature evaluation of macauba biochar for uranium adsorption from aqueous solutions. Biomass Bioenergy 122:381–390

    Article  Google Scholar 

  16. Hu H, Zhang X, Wang T, Sun LL, Wu HX, Chen XH (2018) Bamboo (Acidosasa longiligula) shoot shell biochar: its potential application to isolation of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 316:349–362

    Article  CAS  Google Scholar 

  17. Li X, Pan H, Yu M, Wakeel M, Luo J, Liao Q, Liu J (2018) Macroscopic and molecular investigations of immobilization mechanism of uranium on biochar: EXAFS spectroscopy and static batch. J Mol Liq 269:64–71

    Article  CAS  Google Scholar 

  18. Bayramoglu G, Arica MY (2019) Star type polymer grafted and polyamidoxime modified silica coated-magnetic particles for adsorption of U(VI) ions from solution[J]. Chem Eng Res Des 147:146–159

    Article  CAS  Google Scholar 

  19. Wang SJ, Guo W, Gao F, Wnag YK, Gao Y (2018) Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars. RSC Adv 8:13205–13217

    Article  CAS  Google Scholar 

  20. Wang BL, Li YY, Zheng JL, Hu YW, Wang XJ, Hu BW (2020) Efficient removal of U(VI) from aqueous solutions using the magnetic biochar derived from the biomass of a bloom-forming cyanobacterium (Microcystis aeruginosa). Chemosphere 254:126898

    Article  CAS  PubMed  Google Scholar 

  21. Erkaya IA, Arica MY, Akbulut A (2014) Bayramoglu G (2014) Biosorption of uranium(VI) by free and entrapped Chlamydomonas reinhardtii: kinetic, equilibrium and thermodynamic studies[J]. J Radioanal Nucl Chem 299:1993–2003

    Article  CAS  Google Scholar 

  22. Li MX, Liu HB, Chen TH, Dong C, Sun YB (2019) Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Sci Total Environ 651:1020–1028

    Article  CAS  PubMed  Google Scholar 

  23. Hu QY, Zhu YL, Hu BW, Lu SH, Sheng GD (2018) Mechanistic insights into sequestration of U(VI) toward magnetic biochar: batch, XPS and EXAFS techniques. J Environ Sci-China 70:217–225

    Article  PubMed  Google Scholar 

  24. Philippou K, Anastopoulos I, Dosche C, Pashalidis I (2019) Synthesis and characterization of a novel Fe3O4-loaded oxidized biochar from pine needles and its application for uranium removal. Kinetic, thermodynamic, and mechanistic analysis. J Environ Manage 252:109677

    Article  CAS  PubMed  Google Scholar 

  25. Pan ZZ, Bártová B, LaGrange T, Butorin SM, Hyatt NC, Stennett MC, Kvashnina KO, Bernier-Latmani R (2020) Nanoscale mechanism of UO2 formation through uranium reduction by magnetite. Nat Commun 10:4001

    Article  Google Scholar 

  26. Yang SY, Wang XX, Chen ZS, Li Q, Wei BB, Wang XK (2018) Synthesis of Fe3O4-based nanomaterials and their application in the removal of radionuclides and heavy metal ions. Prog Chem 30:225–242

    Google Scholar 

  27. Li MX, Liu HB, Chen TH, Chen D, Wang C, Wei L, Wang LK (2020) Efficient U(VI) adsorption on iron/carbon composites derived from the coupling of cellulose with iron oxides: performance and mechanism. Sci Total Environ 703:135604

    Article  CAS  PubMed  Google Scholar 

  28. SEPAC (State Environmental Protection Administration of China), (1986). Methods of analysing microquantity of uranium in water. National Standard of the People's Republic of China (GB6768–86). China Environmental Science Press, Beijing, pp. 296–301 in Chinese.

  29. Ifthikar J, Wang J, Wang QL, Wang T, Wang HB, Khan A, Jawad A, Sun TT, Jiao X, Chen ZQ (2017) highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications. Bioresour Technol 238:399–406

    Article  CAS  PubMed  Google Scholar 

  30. Ganesh S, Velavendan P, Pandey NK, Mudali UK, Natarajan R (2014) On-site monitoring of uranium in low level liquid waste streams using U–Br–PADAP strip indicator paper technique. J Radioanal Nucl Chem 302:1513–1518

    Article  CAS  Google Scholar 

  31. Zhang HM, Ruan Y, Liang AP, Shih K, Diao ZH, Su MH, Hou LA, Chen DY, Lu H, Kong LJ (2019) Carbothermal reduction for preparing nZVI/BC to extract uranium: insight into the iron species dependent uranium adsorption behavior. J Cleaner Prod 239:117873

    Article  CAS  Google Scholar 

  32. Bayramoglu G, Arica MY (2017) Polyethylenimine and tris(2-aminoethyl)amine modified p(GA–EGMA) microbeads for sorption of uranium ions: equilibrium, kinetic and thermodynamic studies[J]. J Radioanal Nucl Chem 312:293–303

    Article  CAS  Google Scholar 

  33. Arica MY, Bayramoglu G (2016) Polyaniline coated magnetic carboxymethylcellulose beads for selective removal of uranium ions from aqueous solution[J]. J Radioanal Nucl Chem 310:711–724

    Article  CAS  Google Scholar 

  34. Ashry A, Bailey EH, Cheneryc SRN, Young SD (2016) Kinetic study of time-dependent fixation of U(VI) on biochar. J Hazard Mater 320:55–66

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Li Y, Guo H, Zhang HH, Zhang N, Hayat T, Sun YB (2019) Decontamination of U(VI) on graphene oxide/Al2O3 composites investigated by XRD, FT-IR and XPS techniques. Environ Pollut 248:332–338

    Article  CAS  PubMed  Google Scholar 

  36. Dong LJ, Yang JX, Mou YY, Sheng GD, Wang LX, Linghu WS, Asiri AM (2017) Effect of various environmental factors on the adsorption of U(VI) onto biochar derived from rice straw. J Radioanal Nucl Chem 314:377–386

    Article  CAS  Google Scholar 

  37. Zeng TT, Mo GH, Zhang XL, Liu JX, Liu HJ, Xie SB (2020) U(VI) removal efficiency and mechanism of biochars derived from sewage sludge at two pyrolysis temperatures. J Radioanal Nucl Chem 326:1413–1425

    Article  CAS  Google Scholar 

  38. Hua R, Xiao J, Wanga TH, Chen GC, Chen L, Tian XY (2020) Engineering of phosphate-functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chem Eng J 379:122388

    Article  Google Scholar 

  39. Chen T, Zhou Z, Han R, Meng R, Wang H, Lu W (2015) Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism. Chemosphere 134:286–293

    Article  CAS  PubMed  Google Scholar 

  40. Chen T, Zhang YX, Wang HT, Lu WJ, Zhou ZY, Zhang YC, Ren LL (2014) Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour Technol 164:47–54

    Article  CAS  PubMed  Google Scholar 

  41. Saleha AS, Leea JY, Joa YH, Yuna J (2018) Uranium(VI) sorption complexes on silica in the presence of calcium and carbonate. J Environ Radioactiv 182:63–69

    Article  Google Scholar 

  42. Xie YP, Fang Q, Li M, Wang SN, Luo YF, Wu XY, Lv JW, Tan WF, Wang HQ, Tan KX (2020) Low concentration of Fe(II) to enhance the precipitation of U(VI) under neutral oxygen-rich conditions. Sci Total Environ 711:134827

    Article  CAS  PubMed  Google Scholar 

  43. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  PubMed  Google Scholar 

  44. Ma Y, Cheng X, Kang ML, Yang GZ, Yin ML, Wang J, Gang S (2020) Factors influencing the reduction of U(VI) by magnetite. Chemosphere 254:126855

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported the Open Funding for Innovation Platform of Education Department in Hunan Province (19K081) and Research Program for Young Backbone Scholar in Hunan Province (XJT[2018]574). The authors thank the permissions from Hengyang Water Group for providing sewage sludge to prepare the biochar in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, G., Hu, Q., Wang, G. et al. Fe3O4-modified sewage sludge biochar for U(VI) removal from aqueous solution: performance and mechanism. J Radioanal Nucl Chem 329, 225–237 (2021). https://doi.org/10.1007/s10967-021-07782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07782-0

Keywords

Navigation