Skip to main content
Log in

Adsorptive characteristics of some metal ions on chitosan/zirconium phosphate/silica decorated graphene oxide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Graphene oxide/chitosan/zirconiumphosphate/silicate (GO/CS/ZrP/Si) as a novel nano-composite has highly adsorption of 134Cs, 60Co, 152, 154Eu and 160 Tb. The GO/CS/ZrP/Si has better adsorption of 152, 154Eu and 160 Tb. A comparison of the adsorption kinetics and isotherms were analyzed using different models. The adsorption data was fitting with the pseudo second-order and the Langmuir isotherm. The changes in Gibbs free energy ΔGo), enthalpy (ΔHo), and entropy (ΔSo) have been calculated. Selective adsorption of lanthanide ions from monazite solution was achieved. The break through capacities of Sm3+, La3+, Eu3+ and Tb3+ on GO/CS/ZrP/Si were found as 14.5, 13.0, 14.8 and 14.9 mg/g respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gouda MM, Dawood YH, Zaki AA et al (2019) Adsorption characteristic of Cs+ and Co2+ ions from aqueous solutions onto geological sediments of radioactive waste disposal site. J Geochemical Explor 206:106366. https://doi.org/10.1016/j.gexplo.2019.106366

    Article  CAS  Google Scholar 

  2. Prado ESP, Miranda FS, de Araujo LG et al (2020) Thermal plasma technology for radioactive waste treatment: a review. J Radioanal Nucl Chem 325:331–342. https://doi.org/10.1007/s10967-020-07269-4

    Article  CAS  Google Scholar 

  3. Kameo Y, Katayama A, Hoshi A et al (2010) Simple determination of 99Tc in radioactive waste using Tc extraction disk and imaging plates. Appl Radiat Isot 68:139–143. https://doi.org/10.1016/j.apradiso.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Chen L, Wang L et al (2019) Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 62:933–967

    CAS  Google Scholar 

  5. Maringer FJ, Šuráň J, Kovář P et al (2013) Radioactive waste management: review on clearance levels and acceptance criteria legislation, requirements and standards. Appl Radiat Isot 81:255–260. https://doi.org/10.1016/j.apradiso.2013.03.046

    Article  CAS  PubMed  Google Scholar 

  6. Jun BM, Jang M, Park CM, et al (2019) Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater. Nucl Eng Technol 52(6):1201–1207

  7. Liu X, Pang H, Liu X et al (2021) Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innov 2:100076

    Google Scholar 

  8. Munthali MW, Johan E, Aono H, Matsue N (2015) Cs + and Sr 2+ adsorption selectivity of zeolites in relation to radioactive decontamination. J Asian Ceram Soc 3:245–250. https://doi.org/10.1016/j.jascer.2015.04.002

    Article  Google Scholar 

  9. Hu B, Ai Y, Jin J et al (2020) Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2:47–64

    Google Scholar 

  10. Ban-Nai T, Muramatsu Y (2002) Transfer factors of radioactive Cs, Sr, Mn, Co and Zn from Japanese soils to root and leaf of radish. J Environ Radioact 63:251–264. https://doi.org/10.1016/S0265-931X(02)00032-2

    Article  CAS  PubMed  Google Scholar 

  11. Maeda E, Yokoyama A, Taniguchi T et al (2020) Measurements of the excitation functions of radon and astatine isotopes from 7Li-induced reactions with 209Bi for development of a 211Rn–211At generator. J Radioanal Nucl Chem 323:921–926. https://doi.org/10.1007/s10967-019-06990-z

    Article  CAS  Google Scholar 

  12. Han Q, Du M, Guan Y et al (2020) Removal of simulated radioactive cerium (III) based on innovative magnetic trioctylamine-polystyrene composite microspheres. Chem Phys Lett 741:137092. https://doi.org/10.1016/j.cplett.2020.137092

    Article  CAS  Google Scholar 

  13. Rahman ROA, Ibrahium HA, Hung Y-T (2011) Liquid radioactive wastes treatment: a review. Water 3(2):551–565. https://doi.org/10.3390/w3020551

  14. Hou X (2018) Liquid scintillation counting for determination of radionuclides in environmental and nuclear application. J Radioanal Nucl Chem 318:1597–1628. https://doi.org/10.1007/s10967-018-6258-6

    Article  CAS  Google Scholar 

  15. Alharbi NS, Hu B, Hayat T et al (2020) Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Front Chem Sci Eng 14(6):1124–1135

    CAS  Google Scholar 

  16. Liu Y, Pang H, Wang X et al (2020) Zeolitic imidazolate framework-based nanomaterials for the capture of heavy metal ions and radionuclides: a review. Chem Eng J 406:127–139

    Google Scholar 

  17. Chattopadhyay S, Das SS, Alam MN, Madhusmita, (2017) Preparation of 99Mo/99mTc generator based on cross-linked chitosan polymer using low-specific activity (n, γ)99Mo. J Radioanal Nucl Chem 313:647–653. https://doi.org/10.1007/s10967-017-5315-x

    Article  CAS  Google Scholar 

  18. Dakroury GA, Abo-Zahra SF, Hassan HS, Fathy NA (2020) Utilization of silica–chitosan nanocomposite for removal of 152+154Eu radionuclide from aqueous solutions. J Radioanal Nucl Chem 323:439–455. https://doi.org/10.1007/s10967-019-06951-6

    Article  CAS  Google Scholar 

  19. Padala AN, Bhaskarapillai A, Velmurugan S, Narasimhan SV (2011) Sorption behaviour of Co(II) and Cu(II) on chitosan in presence of nitrilotriacetic acid. J Hazard Mater 191:110–117. https://doi.org/10.1016/j.jhazmat.2011.04.046

    Article  CAS  PubMed  Google Scholar 

  20. Nishad PA, Bhaskarapillai A, Velmurugan S, Narasimhan SV (2012) Cobalt (II) imprinted chitosan for selective removal of cobalt during nuclear reactor decontamination. Carbohydr Polym 87:2690–2696. https://doi.org/10.1016/j.carbpol.2011.11.061

    Article  CAS  Google Scholar 

  21. Wang K, Ma H, Pu S et al (2019) Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water. J Hazard Mater 362:160–169. https://doi.org/10.1016/j.jhazmat.2018.08.067

    Article  CAS  PubMed  Google Scholar 

  22. Huang Y, Zheng H, Li H et al (2020) Highly selective uranium adsorption on 2-phosphonobutane-1,2,4-tricarboxylic acid-decorated chitosan-coated magnetic silica nanoparticles. Chem Eng J 388:124349. https://doi.org/10.1016/j.cej.2020.124349

    Article  CAS  Google Scholar 

  23. Rethinasabapathy M, Kang SM, Lee I et al (2019) Highly stable Prussian blue nanoparticles containing graphene oxide–chitosan matrix for selective radioactive cesium removal. Mater Lett 241:194–197. https://doi.org/10.1016/j.matlet.2019.01.070

    Article  CAS  Google Scholar 

  24. El Rouby WMA, Farghali AA, Sadek MA, Khalil WF (2018) Fast Removal of Sr(II) From Water by Graphene Oxide and Chitosan Modified Graphene Oxide. J Inorg Organomet Polym Mater 28:2336–2349. https://doi.org/10.1007/s10904-018-0885-9

    Article  CAS  Google Scholar 

  25. Hassan S, Yasin T, Imran Z, Batool SS (2016) Silane based novel crosslinked Chitosan/Poly(Vinyl Alcohol) membrane: structure, characteristic and adsorption behaviour. J Inorg Organomet Polym Mater 26:208–218. https://doi.org/10.1007/s10904-015-0309-z

    Article  CAS  Google Scholar 

  26. He YQ, Zhang NN, Wang XD (2011) Adsorption of graphene oxide/chitosan porous materials for metal ions. Chinese Chem Lett 22:859–862. https://doi.org/10.1016/j.cclet.2010.12.049

    Article  CAS  Google Scholar 

  27. Yu B, Xu J, Liu JH et al (2013) Adsorption behavior of copper ions on graphene oxide-chitosan aerogel. J Environ Chem Eng 1:1044–1050. https://doi.org/10.1016/j.jece.2013.08.017

    Article  CAS  Google Scholar 

  28. Anush SM, Chandan HR, Vishalakshi B (2019) Synthesis and metal ion adsorption characteristics of graphene oxide incorporated chitosan Schiff base. Int J Biol Macromol 126:908–916. https://doi.org/10.1016/j.ijbiomac.2018.12.164

    Article  CAS  PubMed  Google Scholar 

  29. Ali IM, Zakaria ES, Khalil M et al (2020) Efficient Enrichment of Eu3+, Tb3+, La3+ and Sm3+ on a double core shell nano composite based silica. J Inorg Organomet Polym Mater 30:1537–1552. https://doi.org/10.1007/s10904-019-01303-z

    Article  CAS  Google Scholar 

  30. Huang S-H, Chen D-H (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163:174–179

    CAS  PubMed  Google Scholar 

  31. Chen M, Graedel TE (2015) The potential for mining trace elements from phosphate rock. J Clean Prod 91:337–346

    CAS  Google Scholar 

  32. Tan L, Wang S, Du W, Hu T (2016) Effect of water chemistries on adsorption of Cs (I) onto graphene oxide investigated by batch and modeling techniques. Chem Eng J 292:92–97

    CAS  Google Scholar 

  33. Ashour RM, Abdelhamid HN, Abdel-Magied AF et al (2017) Rare earth ions adsorption onto graphene oxide nanosheets. Solvent Extr ion Exch 35:91–103

    CAS  Google Scholar 

  34. Ma H, Hei Y, Hua L et al (2016) Fabrication of zirconium-pillared montmorillonite porous ceramic as adsorbents for Cr3+ removal and recycling. Ceram Int 42:14903–14909

    CAS  Google Scholar 

  35. Yu S, Wang X, Tan X, Wang X (2015) Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review. Inorg Chem Front 2:593–612

    CAS  Google Scholar 

  36. Zhuang S, Yin Y, Wang J (2018) Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation. Nucl Eng Technol 50:211–215

    CAS  Google Scholar 

  37. Li YM, Miao X, Wei ZG, et al (2016) Iron-tannic acid nanocomplexes: facile synthesis and application for removal of methylene blue from aqueous solution. Dig J Nanomater Biostruct 11(4):1045–1061

  38. Khandaker S, Toyohara Y, Kamida S, Kuba T (2018) Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resour Ind 19:35–46

    Google Scholar 

  39. Tsai S-C, Ouyang S, Hsu C-N (2001) Sorption and diffusion behavior of Cs and Sr on Jih-Hsing bentonite. Appl Radiat Isot 54:209–215

    CAS  PubMed  Google Scholar 

  40. Mahmoud MR, Seliman AF (2014) Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of 137Cs+ and 99TcO4− from aqueous solutions. Appl Radiat Isot 91:141–154

    CAS  PubMed  Google Scholar 

  41. Wu D, Zhang L, Wang L et al (2011) Adsorption of lanthanum by magnetic alginate-chitosan gel beads. J Chem Technol Biotechnol 86:345–352

    CAS  Google Scholar 

  42. Iftekhar S, Srivastava V, Ramasamy DL et al (2018) A novel approach for synthesis of exfoliated biopolymeric-LDH hybrid nanocomposites via in-stiu coprecipitation with gum Arabic: Application towards REEs recovery. Chem Eng J 347:398–406

    CAS  Google Scholar 

  43. Galhoum AA, Mafhouz MG, Abdel-Rehem ST et al (2015) Cysteine-functionalized chitosan magnetic nano-based particles for the recovery of light and heavy rare earth metals: uptake kinetics and sorption isotherms. Nanomaterials 5:154–179

    PubMed  PubMed Central  Google Scholar 

  44. Sheha RR, El-Zahhar AA (2008) Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions. J Hazard Mater 150:795–803

    CAS  PubMed  Google Scholar 

  45. Nekouei F, Nekouei S, Tyagi I, Gupta VK (2015) Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J Mol Liq 201:124–133

    CAS  Google Scholar 

  46. Zakaria ES, Mali I, Khalil M et al (2016) Synthesis, characterization and isotherm studies of new composite sorbents. Bull Mater Sci 39:1709–1724. https://doi.org/10.1007/s12034-016-1321-9

    Article  CAS  Google Scholar 

  47. Khan T, Isa MH, Mustafa MRU et al (2016) Cr (VI) adsorption from aqueous solution by an agricultural waste based carbon. RSC Adv 6:56365–56374

    CAS  Google Scholar 

  48. Ho S-H, Yang Z, Nagarajan D et al (2017) High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge. Bioresour Technol 246:142–149

    CAS  PubMed  Google Scholar 

  49. Xu D, Tan X, Chen C, Wang X (2008) Removal of Pb (II) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater 154:407–416

    CAS  PubMed  Google Scholar 

  50. Bandaru NM, Reta N, Dalal H et al (2013) Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J Hazard Mater 261:534–541

    CAS  PubMed  Google Scholar 

  51. Bankole MT, Abdulkareem AS, Mohammed IA et al (2019) Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci Rep 9:1–19

    CAS  Google Scholar 

  52. Jun B-M, Kim S, Kim Y et al (2019) Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemosphere 231:82–92

    CAS  PubMed  Google Scholar 

  53. Samuel MS, Bhattacharya J, Raj S et al (2019) Efficient removal of Chromium (VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Int J Biol Macromol 121:285–292

    CAS  PubMed  Google Scholar 

  54. Nilchi A, Atashi H, Javid AH, Saberi R (2007) Preparations of PAN-based adsorbers for separation of cesium and cobalt from radioactive wastes. Appl Radiat Isot 65:482–487

    CAS  PubMed  Google Scholar 

  55. Iftekhar S, Srivastava V, Sillanpää M (2017) Enrichment of lanthanides in aqueous system by cellulose based silica nanocomposite. Chem Eng J 320:151–159

    CAS  Google Scholar 

  56. Mohan A (2016) Pectin-Tin (IV) molybdosilicate: an ecofriendly cationic exchanger and its potential for sorption of heavy metals from aqueous solutions. Resour Technol 2:S153–S164

    Google Scholar 

  57. Zhuang S, Wang J (2019) Removal of cobalt ion from aqueous solution using magnetic graphene oxide/chitosan composite. Environ Prog Sustain Energy 38:S32–S41

    CAS  Google Scholar 

  58. Lujanienė G, Šemčuk S, Lečinskytė A et al (2017) Magnetic graphene oxide based nano-composites for removal of radionuclides and metals from contaminated solutions. J Environ Radioact 166:166–174

    PubMed  Google Scholar 

  59. Hu B, Hu Q, Li X et al (2017) Rapid and highly efficient removal of Eu (III) from aqueous solutions using graphene oxide. J Mol Liq 229:6–14

    CAS  Google Scholar 

  60. Taman R, Ossman ME, Mansour MS, Farag HA (2015) Metal oxide nano-particles as an adsorbent for removal of heavy metals. J Adv Chem Eng 5:1–8

    Google Scholar 

  61. Wang Q, Chen L, Sun Y (2012) Removal of radiocobalt from aqueous solution by oxidized MWCNT. J Radioanal Nucl Chem 291:787–795

    CAS  Google Scholar 

  62. Awual MR, Yaita T, Shiwaku H (2013) Design a novel optical adsorbent for simultaneous ultra-trace cerium (III) detection, sorption and recovery. Chem Eng J 228:327–335

    CAS  Google Scholar 

  63. Wu Y, Lee CP, Mimura H et al (2018) Stable solidification of silica-based ammonium molybdophosphate by allophane: application to treatment of radioactive cesium in secondary solid wastes generated from fukushima. J Hazard Mater 341:46–54. https://doi.org/10.1016/j.jhazmat.2017.07.044

    Article  CAS  PubMed  Google Scholar 

  64. Khalil M, Mohamed TY, El-tantawy A (2017) kinetic evaluations for the sorption process of lanthanide Ions with Poly-O-toluidine Zr(IV) Tungstophosphate. J Inorg Organomet Polym Mater 27:757–769. https://doi.org/10.1007/s10904-017-0519-7

    Article  CAS  Google Scholar 

  65. Khalil M, El-Aryan YF, El Afifi EM (2018) Sorption performance of light rare earth elements using zirconium titanate and polyacrylonitrile zirconium titanate ion exchangers. Part Sci Technol 36:618–627. https://doi.org/10.1080/02726351.2017.1287141

    Article  CAS  Google Scholar 

  66. Mansy MS, Hassan RS, Selim YT, Kenawy SH (2017) Evaluation of synthetic aluminum silicate modified by magnesia for the removal of 137Cs, 60Co and 152+ 154Eu from low-level radioactive waste. Appl Radiat Isot 130:198–205. https://doi.org/10.1016/j.apradiso.2017.09.042

    Article  CAS  PubMed  Google Scholar 

  67. Olatunji MA, Khandaker MU, Mahmud HNME, Amin YM (2015) Influence of adsorption parameters on cesium uptake from aqueous solutions-a brief review. RSC Adv 5:71658–71683

    CAS  Google Scholar 

  68. Zhang P, Wang Y, Zhang D (2016) Removal of Nd (III), Sr (II), and Rb (I) Ions from aqueous solution by thiacalixarene-functionalized graphene oxide composite as an adsorbent. J Chem Eng Data 61:3679–3691

    CAS  Google Scholar 

  69. Anastopoulos I, Kyzas GZ (2016) Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J Mol Liq 218:174–185

    CAS  Google Scholar 

  70. Zhong X, Liang W, Lu Z, Hu B (2020) Highly efficient enrichment mechanism of U (VI) and Eu (III) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions. Appl Surf Sci 504:144403

    CAS  Google Scholar 

  71. Bakry AM, Awad FS, Bobb JA et al (2020) Melamine-based functionalized graphene oxide and zirconium phosphate for high performance removal of mercury and lead ions from water. RSC Adv 10:37883–37897

    CAS  Google Scholar 

  72. Abu-Nada A, McKay G, Abdala A (2020) Recent advances in applications of hybrid graphene materials for metals removal from wastewater. Nanomaterials 10:595

    CAS  PubMed Central  Google Scholar 

  73. Rabie KA (2007) A group separation and purification of Sm, Eu and Gd from Egyptian beach monazite mineral using solvent extraction. Hydrometallurgy 85:81–86

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy Khalil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaria, E.S., Ali, I.M., Khalil, M. et al. Adsorptive characteristics of some metal ions on chitosan/zirconium phosphate/silica decorated graphene oxide. J Radioanal Nucl Chem 329, 191–211 (2021). https://doi.org/10.1007/s10967-021-07766-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07766-0

Keywords

Navigation