Skip to main content
Log in

Influence of extraction process on Cs isotope ratios for Fukushima Daiichi nuclear power plant accident-contaminated soil

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The influence of extraction process on Cs isotope ratios was investigated by thermal ionization mass spectrometry (TIMS) for nitric-acid (HNO3) treatments of Fukushima Daiichi nuclear power plant accident-contaminated soil samples. In contrast to the consistent TIMS results for conc. HNO3 treatments at 90–200 °C, dilute HNO3 treatment provided a statistically significant 3.0‰-higher 135Cs/137Cs average isotope ratio than the conc. HNO3 treatment conducted at the same temperature. The higher isotope ratio is caused by a specific extraction process making detectable the deviated distribution of Cs isotopes in clay minerals or leading to matrix effects responsible for instrumental mass bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saito K, Tanihata I, Fujiwara M, Saito T, Shimoura S, Otsuka T, Onda Y, Hoshi M, Ikeuchi Y, Takahashi F, Kinouchi N, Saegusa J, Seki A, Takemiya H, Shibata T (2015) Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 139:308–319

    Article  CAS  PubMed  Google Scholar 

  2. Kusakabe M, Oikawa S, Takata H, Misonoo J (2013) Spatiotemporal distributions of Fukushima-derived radionuclides in nearby marine surface sediments. Biogeosciences 10:5019–5030

    Article  Google Scholar 

  3. Külahcı F, Bilici A (2019) Advances on identification and animated simulations of radioactivity risk levels after Fukushima nuclear power plant accident (with a data bank): a critical review. J Radioanal Nucl Chem 321:1–30

    Article  Google Scholar 

  4. Unterweger MP, Hoppes DD, Schima FJ, Coursey JS (2009) Radionuclide half-life measurements data. Updated November 15, 2019. https://www.nist.gov/pml/radionuclide-half-life-measurements/radionuclide-half-life-measurements-data. Accessed 8 Feb 2021

  5. Chaisan K, Smith JT, Bossew P, Kirchner G, Laptev GV (2013) Worldwide isotope ratios of the Fukushima release and early-phase external dose reconstruction. Sci Rep 3:2520

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xu S, Cook GT, Cresswell AJ, Dunbar E, Freeman SPHT, Hou X, Kinch H, Naysmith P, Sanderson DWC, Zhang L (2016) Carbon, cesium and iodine isotopes in Japanese cedar leaves from Iwaki, Fukushima. J Radioanal Nucl Chem 310:927–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ishida M, Yamazaki H (2017) Radioactive contamination in the Tokyo metropolitan area in the early stage of the Fukushima Daiichi nuclear power plant (FDNPP) accident and its fluctuation over five years. PLoS ONE 12:e0187687

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nishizawa Y, Yoshida M, Sanada Y, Torii T (2016) Distribution of the 134Cs/137Cs ratio around the Fukushima Daiichi nuclear power plant using an unmanned helicopter radiation monitoring system. J Nucl Sci Technol 53:468–474

    Article  CAS  Google Scholar 

  9. Firestone RB, Baglin CM (1999) In: Baglin CM (ed), Chu SYF (ed, electronic content), Table of Isotopes, 8th edn, Wiley-VCH

  10. Snyder DC, Delmore JE, Tranter T, Mann NR, Abbott ML, Olson JE (2012) Radioactive cesium isotope ratios as a tool for determining dispersal and re-dispersal mechanisms downwind from the Nevada nuclear security site. J Environ Radioact 110:46–52

    Article  CAS  PubMed  Google Scholar 

  11. Snow MS, Snyder DC (2016) 135Cs/137Cs isotopic composition of environmental samples across Europe: environmental transport and source term emission applications. J Environ Radioact 151:258–263

    Article  CAS  PubMed  Google Scholar 

  12. Snow MS, Snyder DC, Clark SB, Kelley M, Delmore JE (2015) 137Cs activities and 135Cs/137Cs isotopic ratios from soils at Idaho national laboratory: a case study for contaminant source attribution in the vicinity of nuclear facilities. Environ Sci Technol 49:2741–2748

    Article  CAS  PubMed  Google Scholar 

  13. Zheng J, Tagami K, Bu W, Uchida S, Watanabe Y, Kubota Y, Fuma S, Ihara S (2014) 135Cs/137Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident. Environ Sci Technol 48:5433–5438

    Article  CAS  PubMed  Google Scholar 

  14. Shibahara Y, Kubota T, Fujii T, Fukutani S, Takamiya K, Konno M, Mizuno S, Yamana H (2017) Analysis of cesium isotope compositions in environmental samples by thermal ionization mass spectrometry–3. J Nucl Sci Technol 54:158–166

    Article  CAS  Google Scholar 

  15. Shibahara Y, Kubota T, Fujii T, Fukutani S, Ohta T, Takamiya K, Okumura R, Mizuno S, Yamana H (2014) Analysis of cesium isotope compositions in environmental samples by thermal ionization mass spectrometry–1. A preliminary study for source analysis of radioactive contamination in Fukushima prefecture. J Nucl Sci Technol 51:575–579

    Article  CAS  Google Scholar 

  16. Snow MS, Snyder DC, Delmore JE (2016) Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples. Rapid Commun Mass Spectrom 30:523–532

    Article  CAS  PubMed  Google Scholar 

  17. Dunne JA, Richards DA, Chen HW (2017) Procedures for precise measurements of 135Cs/137Cs atom ratios in environmental samples at extreme dynamic ranges and ultra-trace levels by thermal ionization mass spectrometry. Talanta 174:347–356

    Article  CAS  PubMed  Google Scholar 

  18. Yang G, Tazoe H, Yamada M (2016) Rapid determination of 135Cs and precise 135Cs/137Cs atomic ratio in environmental samples by single-column chromatography coupled to triple-quadrupole inductively coupled plasma-mass spectrometry. Anal Chim Acta 908:177–184

    Article  CAS  PubMed  Google Scholar 

  19. Ohno T, Muramatsu Y (2014) Determination of radioactive cesium isotope ratios by triple quadrupole ICP-MS and its application to rainwater following the Fukushima Daiichi nuclear power plant accident. J Anal At Spectrom 29:347–351

    Article  CAS  Google Scholar 

  20. Cao L, Zheng J, Tsukada H, Pan S, Wang Z, Tagami K, Uchida S (2016) Simultaneous determination of radiocesium (135Cs, 137Cs) and plutonium (239Pu, 240Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS. Talanta 159:55–63

    Article  CAS  PubMed  Google Scholar 

  21. Zheng J, Bu W, Tagami K, Shikamori Y, Nakano K, Uchida S, Ishii N (2014) Determination of 135Cs and 135Cs/137Cs atomic ratio in environmental samples by combining ammonium molybdophosphate (AMP)-selective Cs adsorption and ion-exchange chromatographic separation to triple-quadrupole inductively coupled plasma–mass spectrometry. Anal Chem 86:7103–7110

    Article  CAS  PubMed  Google Scholar 

  22. Zheng J, Cao L, Tagami K, Uchida S (2016) Triple-quadrupole inductively coupled plasma-mass spectrometry with a high-efficiency sample introduction system for ultratrace determination of 135Cs and 137Cs in environmental samples at femtogram levels. Anal Chem 88:8772–8779

    Article  CAS  PubMed  Google Scholar 

  23. Nishihara K, Iwamoto H, Suyama K (2012) Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant. JAEA-Data/Code, No. 2012-018 (Japanese)

  24. Bu W, Tang L, Liu X, Wang Z, Fukuda M, Zheng J, Aono T, Hu S, Wang X (2019) Ultra-trace determination of the 135Cs/137Cs isotopic ratio by thermal ionization mass spectrometry with application to Fukushima marine sediment samples. J Anal At Spectrom 34:301–309

    Article  CAS  Google Scholar 

  25. Zhu L, Hou X, Qiao J (2020) Determination of ultralow level 135Cs and 135Cs/137Cs ratio in environmental samples by chemical separation and triple quadrupole ICP-MS. Anal Chem 92:7884–7892

    Article  CAS  PubMed  Google Scholar 

  26. Zhu L, Xu C, Hou X, Qiao J, Zhao Y, Liu G (2020) Determination of ultratrace level 135Cs and 135Cs/137Cs ratio in small volume seawater by chemical separation and thermal ionization mass spectrometry. Anal Chem 92:6709–6718

    Article  CAS  PubMed  Google Scholar 

  27. Parajuli D, Takahashi A, Tanaka H, Sato M, Fukuda S, Kamimura R, Kawamoto T (2015) Variation in available cesium concentration with parameters during temperature induced extraction of cesium from soil. J Environ Radioact 140:78–83

    Article  CAS  PubMed  Google Scholar 

  28. Snow MS, Snyder DC, Mann NR, White BM (2015) Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry. Int J Mass Spectrom 381–382:17–24

    Article  Google Scholar 

  29. Higatsberger MJ, Demorest HL, Nier AO (1954) Secondary emission from Nichrome V, CuBe, and AgMg alloy targets due to positive ion bombardment. J Appl Phys 25:883–886

    Article  CAS  Google Scholar 

  30. Shikamori Y, Nakano K (2015) Feasibility study on the analysis of radioisotopes: Sr-90 and Cs-137. In Agilent 8800 ICP-QQQ Application Handbook, 2nd edn, pp77–78

  31. Sawhney BL (1972) Selective sorption and fixation of cations by clay minerals: a review. Clays Clay Miner 20:93–100

    Article  CAS  Google Scholar 

  32. Fuller AJ, Shaw S, Ward MB, Haigh SJ, Mosselmans JFW, Peacock CL, Stackhouse S, Dent AJ, Trivedi D, Burke IT (2015) Caesium incorporation and retention in illite interlayers. Appl Clay Sci 108:128–134

    Article  CAS  Google Scholar 

  33. Yamasaki S, Takeda A, Nanzyo M, Taniyama I, Nakai M (2001) Background levels of trace and ultra-trace elements in soils of Japan. Soil Sci Plant Nutr 47:755–765

    Article  CAS  Google Scholar 

  34. Wilding MW (1961) Cesium removal from acidic radioactive waste solutions. U.S. Atomic Energy Commission (AEC) Research and Development Report, IDO-14544, Idaho Falls, Idaho

  35. Mähler J, Persson I (2012) A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51:425–438

    Article  PubMed  Google Scholar 

  36. Smit JVR (1958) Ammonium salts of the heteropolyacids as cation exchangers. Nature 181:1530–1531

    Article  CAS  Google Scholar 

  37. Amrhein V, Greenland S, McShane B (2019) Retire statistical significance. Nature 567:305–307

    Article  CAS  PubMed  Google Scholar 

  38. Amrhein V, Trafimow D, Greenland S (2019) Inferential statistics as descriptive statistics: there is no replication crisis if we don’t expect replication. Am Stat 73(S1):262–270

    Article  Google Scholar 

  39. National Institute for Agro-Environmental Sciences. Research report 13th collection (1996) [Typology and regional features of clay mineral composition in the lowland soils of Japan] Wagakuni no teichidojyou ni okeru nendokoubutsu sosei no ruikeika to chiikiteki tokuchou (Japanese). http://www.naro.affrc.go.jp/archive/niaes/sinfo/result/result13/result13_02.html

  40. Tanaka K, Watanabe N, Yamasaki S, Sakaguchi A, Fan Q, Takahashi Y (2018) Mineralogical control of the size distribution of stable Cs and radiocesium in riverbed sediments. Geochem J 52:173–185

    Article  CAS  Google Scholar 

  41. Brouwer E, Baeyens B, Maes A, Cremers A (1983) Cesium and rubidium ion equilibria in illite clay. J Phys Chem 87:1213–1219

    Article  CAS  Google Scholar 

  42. Bradbury MH, Baeyens B (2000) A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. J Contam Hydrol 42:141–163

    Article  CAS  Google Scholar 

  43. Wick S, Baeyens B, Fernandes MM, Voegelin A (2018) Thallium adsorption onto illite. Environ Sci Technol 52:571–580

    Article  CAS  PubMed  Google Scholar 

  44. Mukai H, Hatta T, Kitazawa H, Yamada H, Yaita T, Kogure T (2014) Speciation of radioactive soil particles in the Fukushima contaminated area by IP autoradiography and microanalyses. Environ Sci Technol 48:13053–13059

    Article  CAS  PubMed  Google Scholar 

  45. Taylor VF, Evans RD, Cornett RJ (2008) Preliminary evaluation of 135Cs/137Cs as a forensic tool for identifying source of radioactive contamination. J Environ Radioact 99:109–118

    Article  CAS  PubMed  Google Scholar 

  46. Lee T, Ku TL, Lu HL, Chen JC (1993) First detection of fallout Cs-135 and potential applications of 137Cs/135Cs ratios. Geochim Cosmochim Acta 57:3493–3497

    Article  CAS  Google Scholar 

  47. Krupskaya VV, Zakusin SV, Tyupina EA, Dorzhieva OV, Zhukhlistov AP, Belousov PE, Timofeeva MN (2017) Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions. Minerals 7:49

    Article  Google Scholar 

  48. Turpault MP, Trotignon L (1994) The dissolution of biotite single crystals in dilute HNO3 at 24°C: evidence of an anisotropic corrosion process of micas in acidic solutions. Geochim Cosmochim Acta 58:2761–2775

    Article  CAS  Google Scholar 

  49. Trubača-Boginska A, Ādiņa R, Vaivars G, Švirksts J (2018) A Study on acidification and intercalation of illite clay minerals and their potential use as a filler in SPEEK composite membranes. Key Eng Mater 762:186–191

    Article  Google Scholar 

  50. Steudel A, Batenburg LF, Fischer HR, Weidler PG, Emmerich K (2009) Alteration of non-swelling clay minerals and magadiite by acid activation. Appl Clay Sci 44:95–104

    Article  CAS  Google Scholar 

  51. Albarède F, Beard B (2004) Analytical methods for non-traditional isotopes. Rev Mineral Geochem 55:113–152

    Article  Google Scholar 

  52. van Zuilen K, Müller T, Nägler TF, Dietzel M, Küsters T (2016) Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures. Geochim Cosmochim Acta 186:226–241

    Article  Google Scholar 

  53. White WM (2020) In: Geochemistry, 2nd edn, Chapter 9, Stable isotope geochemistry. John Wiley & Sons, pp 432–511, ISBN: 9781119438052

  54. Sharp Z (2006) In: Principles of stable isotope geochemistry, Chapter 3, Equilibrium isotopic fractionation, Prentice Hall, pp 40–63, ISBN: 0130091391

Download references

Acknowledgements

The authors are grateful to Prof. Takeshi Ohno from Gakushuin University for his advice on ICP-MS/MS measurement conditions. We would also like to take this opportunity to thank Mr. Taichi Yamashita and Drs. Yasuhiko Fujii and Zenko Yoshida for great support and helpful advice in carrying out this research. This research is partially supported by "Support for Tokyo Tech Advanced Researchers (STAR) from Tokyo Institute of Technology".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Tsukahara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, H., Park, K.C., Nomura, M. et al. Influence of extraction process on Cs isotope ratios for Fukushima Daiichi nuclear power plant accident-contaminated soil. J Radioanal Nucl Chem 329, 327–336 (2021). https://doi.org/10.1007/s10967-021-07760-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07760-6

Keywords

Navigation