Skip to main content
Log in

Kinetic and equilibrium studies of Cs-137 sorption on calcium-doped Prussian blue

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Since the Fukushima plant accident took place in 2011, a large amount of radioactive cesium ions have been released and their separation from wastewater has been a major concern. Herein, we have synthesized a Cs-137 adsorbent: calcium-doped Prussian Blue (Ca-PB), using a simple solution co-precipitation technique. The adsorbent was characterized by FTIR and XRD, and systematically evaluated the kinetics and adsorption equilibrium for Cs+ adsorbed to Ca-PB. The experimental data were followed by a pseudo-second order kinetic model and well adapted to Langmuir’s isothermal model. The research showed that Ca-PB can be used to treat water contaminated by Cs-137 in extremely acidic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hirose K (2012) 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring result. J Environ Radioact 111:13–17

    Article  CAS  Google Scholar 

  2. Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471:800–817

    Article  Google Scholar 

  3. Buesseler K, Dai M, Aoyama M, Benitez-Nelson C, Charmasson S, Higley K, Maderich V, Masque P, Oughton D, Smith JN (2017) Fukushima Daiichi-derived radionuclides in the ocean: transport fate, and impacts. Ann Rev Mar Sci 9:173–203

    Article  Google Scholar 

  4. Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P (2013) Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment. J Nanoparticle Res 15(6):1689. https://doi.org/10.1007/s11051-013-1689-z

    Article  Google Scholar 

  5. Narayanam PK, Jishnu A, Sankaran K (2018) Graphene oxide supported filtration of cesium from aqueous systems. Coll Surf A Physicochem Eng Asp 539:416–243

    Article  CAS  Google Scholar 

  6. Nayl AA, Ahmed IM, Abd-Elhamid AI, Aly HF, Attallah MF (2020) Selective sorption of 134Cs and 60Co radioisotopes using synthetic nanocopper ferrocyanide-SiO2 materials. Sep Purif Technol 234:116060. https://doi.org/10.1016/j.seppur.2019.116060

    Article  CAS  Google Scholar 

  7. Olatunji MA, Khandaker MU, Mahmud HNME, Amin YM (2015) Influence of adsorption parameters on cesium uptake from aqueous solutions—a brief review. RSC Adv 5:71658–71683

    Article  CAS  Google Scholar 

  8. Li WJ, Han C, Cheng G, Chou SL, Liu HK, Dou SX (2019) chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 15(32):1900470. https://doi.org/10.1002/smll.201900470

    Article  CAS  PubMed  Google Scholar 

  9. Han F, Zhang GH, Gu P (2013) Adsorption kinetics and equilibrium modeling of cesium on copper ferrocyanide. J Radioanal Nucl Chem 295:369–377

    Article  CAS  Google Scholar 

  10. Faustino PJ, Yang Y, Progar JJ, Brownell CR, Sadrieh N, May JC, Leutzinger E, Place DA, Duffy EP, Houn F, Loewke SA, Mecozzi VJ, Ellison CD, Khan MA, Hussain AS, Lyon RC (2008) Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. J Pharm Biomed Anal 47(1):114–125

    Article  CAS  Google Scholar 

  11. Fujita H, Sasano H, Miyajima R (2014) Adsorption equilibrium and kinetics of cesium onto insoluble Prussian blue synthesized by an immediate precipitation reaction between Fe3+ and [Fe(CN)6]4-. Adsorption 20:905–915

    Article  CAS  Google Scholar 

  12. Torad NL, Hu M, Imura M, Naito M, Yamauchi Y (2012) Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas. J Mater Chem 22:18261–18267

    Article  CAS  Google Scholar 

  13. Ishizaki M, Akiba S, Ohtani A, Hoshi Y, Ono K, Matsuba M, Togashi T, Kananizuka K, Sakamoto M, Takahashi A, Kawamoto T, Tanaka H, Watanabe M, Arisaka M, Nankawad T, Kurihara M (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans 42:16049–16055

    Article  CAS  Google Scholar 

  14. Qin YH, Kang B, Dai YD, Li J, Shen WT (2014) Adsorption mechanism analysis of cesium ions nickel hexacyanoferrate. Atomic Energy Sci Technol 48:1751–1756

    Google Scholar 

  15. Ojwang DO, Grins J, Wardecki D, Valvo M, Renman V, Haggstrom L, Ericsson T, Gustafsson T, Mahmoud A, Hermann RP, Svensson G (2016) Structure characterization and properties of K-containing copper hexacyanoferrate. Inorg Chem 55:5924–5934

    Article  CAS  Google Scholar 

  16. Buser HJ, Schwarzenbach D, Petter W, Ludi A (1977) The crystal structure of Prussian blue: Fe4[Fe(CN)6]3xH2O. Inorg Chem 16(11):2704–2710

    Article  CAS  Google Scholar 

  17. Loos-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Merinov B (2004) Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J Solid State Chem 177:1817–1828

    Article  CAS  Google Scholar 

  18. Smiciklas I, Dimovic S, Plecas I (2007) Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Appl Clay Sci 35:139–144

    Article  CAS  Google Scholar 

  19. Khandaker S, Toyohara Y, Saha GC, Awual MR, Kuba T (2020) Development of synthetic zeolites from bio-slag for cesium adsorption:Kinetic, isotherm and thermodynamic studies. J Water Process Eng 33:101055. https://doi.org/10.1016/j.jwpe.2019.101055

    Article  Google Scholar 

  20. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  21. Crittenden JC, Sanongraj S, Bulloch JL, Hand DW, Rogers TN, Speth TF, Ulmer M (1999) Correlation of aqueous-phase adsorption isotherms. Environ Sci Technol 33:2926–2933

    Article  CAS  Google Scholar 

  22. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1362–1403

    Article  Google Scholar 

  23. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

  24. Kasap S, Tel H, Piskin S (2011) Preparation of TiO2 nanoparticles by sonochemical method, isotherm, thermodynamic and kinetic studies on the sorption of strontium. J Radioanal Nucl Chem 289:489–495

    Article  CAS  Google Scholar 

  25. El-Naggar IM, Zakaria ES, Ali IM, Khalil M, El-Shahat MF (2012) Kinetic modeling analysis for the removal of cesium ions from aqueous solutions using polyaniline titanotungstate. Arab J Chem 5:109–119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers for their valuable comments. The work is supported in part by the General Project of Scientific Research Fund of Hunan Provincial Education Department (grant number 18C0461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangshu Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Xia, L. Kinetic and equilibrium studies of Cs-137 sorption on calcium-doped Prussian blue. J Radioanal Nucl Chem 328, 1011–1018 (2021). https://doi.org/10.1007/s10967-021-07742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07742-8

Keywords

Navigation