Skip to main content
Log in

The coordination of low-valent Re/Tc with glutarimide dioxime and the fate of Tc in aqueous solution: spectroscopy, ESI–MS and EXAFS

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The effect of glutarimide dioxime (H3A) on the fate of Tc in aqueous solution was studied, the results found that the distribution ratio of Tc between TBP and aqueous phase decreased by one order of magnitude with addition of H3A, due to the formation of low-valent Tc complexes with H3A. Further study of coordination mode between low-valent Tc and H3A was carried by using Re as substitute. Firstly, the low-valent Re complexes with H3A were prepared by reduction of Re(VII) using hydrazine in the presence of H3A, the results showed that pH 8.0, high CH3A and high Chydrazine are favorable for the formation of low-valent Re complexes, with a characteristic peak at 380 nm. Subsequently, the species of low-valent Re complexes were further studied by XPS, ESI–MS and EXAFS, low-valent Re is tetravalent and forms 1:1 (ReA) and 1:2 (ReA2) mononuclear complexes with H3A. The low-valent Re/Tc complexes are air-stable in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Poineau F, Mausolf E, Jarvinen GD, Sattelberger AP, Czerwinski KR (2012) Technetium chemistry in the fuel cycle: combining basic and applied studies. Inorg Chem 52(7):3573–3578

    Article  PubMed  Google Scholar 

  2. Del Cul G, Bostick W, Trotter D, Osborne P (1993) Technetium-99 removal from process solutions and contaminated groundwater. Sep Sci Technol 28(1–3):551–564

    Article  Google Scholar 

  3. Thevenet A, Miljkovic A, La Cognata S, Marie C, Tamain C, Boubals N, Mangano C, Amendola V, Guilbaud P (2021) Syntheses and evaluation of new hydrophilic azacryptands used as masking agents of technetium in solvent extraction processes. Dalton Trans 50(5):1620–1630

    Article  CAS  PubMed  Google Scholar 

  4. Thevenet A, Marie C, Tamain C, Amendola V, Miljkovic A, Guillaumont D, Boubals N, Guilbaud P (2020) Perrhenate and pertechnetate complexation by an azacryptand in nitric acid medium. Dalton Trans 49(5):1446–1455

    Article  CAS  PubMed  Google Scholar 

  5. Boukis Ν, Kanellakopulos Β (1990) The interaction of tetravalent technetium with dibutyl phosphoric acid. Radiochim Acta 49(3):141–146

    Article  CAS  Google Scholar 

  6. Schwochau K (1983) The present status of technetium chemistry. Radiochim Acta 32(1–3):139–152

    Article  CAS  Google Scholar 

  7. Pruett DJ, McTaggart DR (1981) The solvent extraction behavior of technetium. Radiochim Acta 29(2–3):107–112

    Article  CAS  Google Scholar 

  8. Moeyaert P, Dumas T, Guillaumont D, Kvashnina K, Sorel C, Miguirditchian M, Moisy P, Dufrêche J-F (2016) Modeling and speciation study of uranium(VI) and technetium(VII) coextraction with DEHiBA. Inorg Chem 55(13):6511–6519

    Article  CAS  PubMed  Google Scholar 

  9. Moeyaert P, Dumas T, Guillaumont D, Solari PL, Lefebvre C, Thevenet A, Sorel C, Moisy P (2020) Modeling and speciation study of uranium(VI) and technetium(VII) with TBP. Solvent Extr Ion Exch 39(3):1–23

  10. Salomon L, Lopez-Menchero E (1970) Optimization of the aqueous processing of irradiated fuel from nuclear power reactors. Use of uranium(IV) nitrate as reductant in a Purex type processing plant. Ind Eng Chem Prod Res Dev 9(3):345–358

    Article  CAS  Google Scholar 

  11. Schlea CS, Caverly MR, Henry HE, Jenkins WJ (1963) Uranium(IV) nitrate as a reducing agent for plutonium(IV) in the Purex process. E. I. du Pont de Nemours & Co., Aiken, SC (USA), Savannah River Lab

  12. McKibben JM, Chostner DF, Orebaugh EG (1983) Plutonium-uranium separation in the Purex process using mixtures of hydroxylamine nitrate and ferrous sulfamate. E. I. du Pont de Nemours & Co., Aiken, SC (USA), Savannah River Lab

  13. Garraway J, Wilson PD (1984) The technetium-catalysed oxidation of hydrazine by nitric acid. J Less-Common Met 97:191–203

    Article  CAS  Google Scholar 

  14. Dvoeglazov K, Marchenko V, Koltunov V (2005) Oxidation of U(IV) in HNO3 solutions containing urea and Tc(VII). Radiochemistry 47(1):63–68

    Article  CAS  Google Scholar 

  15. Koltunov V, Marchenko V, Nikiforov A, Smelov V, Shmidt V, Gomonova T, Polunin A, Kondrat’ev B (1986) The role taken by technetium in the oxidation-reduction processes used in irradiated-fuel technology. At Energy 60(1):43–51

    Article  Google Scholar 

  16. Koltunov V, Gomonova T, Marchenko V (1984) Kinetics of technetium reactions: V. Reduction of Tc(VII) by uranium(IV) in HCl solution. Sov Radiochem (Engl Transl) 26(6):692–695

    Google Scholar 

  17. Popova NYN, Tananaev IG, Rovnyi SI, Myasoedov BF (2003) Technetium: behaviour during reprocessing of spent nuclear fuel and in environmental objects. Russ Chem Rev 72:101–121

    Article  CAS  Google Scholar 

  18. Mashkin AN, Korchenkin KK, Svetlakova NA (2002) Technetium distribution throughout Purex process cycles at RT-1 plant. Radiochemistry 44(1):35–41

    Article  CAS  Google Scholar 

  19. Goletskii ND, Zilberman BY, Fedorov YS, Kudinov AS, Timoshuk AA, Sytnik LV, Puzikov EA, Rodionov SA, Krinitsyn AP, Ryazantsev VI, Ryabkov DV (2014) Ways of technetium and neptunium localization in extraction reprocessing of spent nuclear fuel from nuclear power plants. Radiochemistry 56(5):501–514

    Article  CAS  Google Scholar 

  20. Herbst RS, Baron P, Nilsson M (2011) 6-Standard and advanced separation: Purex processes for nuclear fuel reprocessing, Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Woodhead Publishing Series in Energy, pp 141–175

  21. Gong CS, Lukens WW, Poineau F, Czerwinski KR (2008) Reduction of pertechnetate by acetohydroxamic acid: formation of [TcII(NO)(AHA)2(H2O)]+ and implications for the UREX process. Inorg Chem 47(15):6674–6680

    Article  CAS  PubMed  Google Scholar 

  22. Gong CMS, Poineau F, Czerwinski KR (2010) Process for the extraction of technetium from uranium (US20100124522 A1)

  23. Melent’ev AB, Mashkin AN, Tugarina OV, Kolupaev DN, Zilberman BY, Tananaev IG (2011) Effect of some reducing and complexing agents on the extraction behavior of technetium in the TBP-HNO3 system. Radiochemistry 53(3):256–263

    Article  Google Scholar 

  24. Xiong J, Hu S, Liu Y, Yu J, Yu H, Xie L, Wen J, Wang X (2017) Polypropylene modified with amidoxime/carboxyl groups in separating uranium(VI) from thorium(IV) in aqueous solutions. ACS Sustain Chem Eng 5(2):1924–1930

    Article  CAS  Google Scholar 

  25. Qin Z, Shi S, Yang C, Wen J, Jia J, Zhang X, Yu H, Wang X (2016) The coordination of amidoxime ligands with uranyl in the gas phase: a mass spectrometry and DFT study. Dalton Trans 45(41):16413–16421

    Article  CAS  PubMed  Google Scholar 

  26. Ansari SA, Yang Y, Zhang Z, Gagnon KJ, Teat SJ, Luo S, Rao L (2016) Complexation of lanthanides with glutaroimide-dioxime: binding strength and coordination modes. Inorg Chem 55(3):1315–1323

    Article  CAS  PubMed  Google Scholar 

  27. Ansari SA, Bhattacharyya A, Zhang Z, Rao L (2015) Complexation of neptunium(V) with glutaroimide dioxime: a study by absorption spectroscopy, microcalorimetry, and density functional theory calculations. Inorg Chem 54(17):8693–8698

    Article  CAS  PubMed  Google Scholar 

  28. Xie X, Tian Y, Qin Z, Yu Q, Wei H, Wang D, Li X, Wang X (2017) Complexation of manganese with glutarimidedioxime: implication for extraction uranium from seawater. Sci Rep 7:43503

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tian G, Teat SJ, Zhang Z, Rao L (2012) Sequestering uranium from seawater: binding strength and modes of uranyl complexes with glutarimidedioxime. Dalton Trans 41(38):11579–11586

    Article  CAS  PubMed  Google Scholar 

  30. Xian L, Tian G, Beavers CM, Teat SJ, Shuh DK (2016) Glutarimidedioxime: a complexing and reducing reagent for plutonium recovery from spent nuclear fuel reprocessing. Angew Chem Int Ed 55(15):4671–4673

    Article  CAS  Google Scholar 

  31. Katayev EA, Kolesnikov GV, Sessler JL (2009) Molecular recognition of pertechnetate and perrhenate. Chem Soc Rev 38(6):1572–1586

    Article  CAS  PubMed  Google Scholar 

  32. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(4):537–541

    Article  CAS  PubMed  Google Scholar 

  33. Kruger GJ, Reynhardt EC (1978) Ammonium perrhenate at 295 and 135 K. Acta Cryst B 34(1):259–261

    Article  Google Scholar 

  34. Magneli A (1957) Studies on rhenium oxides. Acta Chem Scand 11:28–33

    Article  CAS  Google Scholar 

  35. Rulfs CL, Meyer RJ (1955) Rhenium(IV) compounds: synthesis and properties. J Am Chem Soc 77(17):4505–4507

    Article  CAS  Google Scholar 

  36. Joergensen CK, Schwochau K (1965) Comparative interpertation of absorption spectea of technetium(IV) and rhenium(IV) hexahalides. Z Naturforsch A 20(1):65–75

    Article  Google Scholar 

  37. Mucalo MR, Bullen CR (2001) Rhenium-based hydrosols: preparation and properties. J Colloid Interface Sci 239(1):71–77

    Article  CAS  PubMed  Google Scholar 

  38. Meyer RE, Arnold WD, Case FI, O’Kelley GD (1991) Solubilities of Tc(IV) oxides. Radiochim Acta 55(1):11–18

    Article  CAS  Google Scholar 

  39. Cimino A, Angelis BAD, Gazzoli D, Valigi M (1980) Photoelectron spectroscopy (XPS) and thermogravimetry (TG) of pure and supported rhenium oxides. 2. Rhenium oxides on titanium dioxide. Z Anorg Allg Chem 471:208–226

    Article  CAS  Google Scholar 

  40. Khan M, Um W, Kim W, Heo J, Kim H, Chang S (2018) Synthesis of rhenium-doped tin dioxide for technetium radioactive waste immobilization. J Nucl Mater 505:134–142

    Article  CAS  Google Scholar 

  41. Zhang X, Yang Y, Huang M (1976) Preliminary study on the extraction properties of technetium. Atom Energy Sci Technol 10(1):52

    Google Scholar 

  42. Zhu G, Huang H (1992) Analysis of technetium in high-level radioactive waste liquid. Atom Energy Sci Technol 5:27

    Google Scholar 

  43. Wang L, Song H, Yuan L, Li Z, Zhang P, Gibson JK, Zheng L, Wang H, Chai Z, Shi W (2019) Effective removal of anionic Re(VII) by surface-modified Ti2CTx MXene nanocomposites: implications for Tc(VII) sequestration. Environ Sci Technol 53(7):3739–3747

    Article  CAS  PubMed  Google Scholar 

  44. Soderquist CZ, Schweiger MJ, Kim D-S, Lukens WW, McCloy JS (2014) Redox-dependent solubility of technetium in low activity waste glass. J Nucl Mater 449(1–3):173–180

    Article  CAS  Google Scholar 

  45. Lukens WW, McKeown DA, Buechele AC, Muller IS, Shuh DK, Pegg IL (2007) Dissimilar behavior of technetium and rhenium in borosilicate waste glass as determined by X-ray absorption spectroscopy. Chem Mater 19(3):559–566

    Article  CAS  Google Scholar 

  46. Lukens WW, Bucher JJ, Shuh DK, Edelstein NM (2005) Evolution of technetium speciation in reducing grout. Environ Sci Technol 39(20):8064–8070

    Article  CAS  PubMed  Google Scholar 

  47. Chiozzone R, González R, Kremer C, De Munno G, Cano J, Lloret F, Julve M, Faus J (1999) Synthesis, crystal structure, and magnetic properties of tetraphenylarsonium tetrachloro(oxalato)rhenate(IV) and bis(2,2‘-bipyridine)tetrachloro(μ-oxalato)copper(II)rhenium(IV). Inorg Chem 38(21):4745–4752

    Article  CAS  PubMed  Google Scholar 

  48. Martínez-Lillo J, Armentano D, De Munno G, Lloret F, Julve M, Faus J (2006) Rhenium(IV) cyanate complexes: synthesis, crystal structures and magnetic properties of NBu4[ReBr4(OCN)(DMF)] and (NBu4)2[ReBr(OCN)2(NCO)3]. Inorg Chim Acta 359(13):4343–4349

    Article  Google Scholar 

  49. Chen X, Femia FJ, Babich JW, Zubieta J (2000) An unexpected ‘4+2’ [N3S]/[NS] rhenium(IV) complex formed upon cleavage of a Re(V) imido bond. Inorg Chim Acta 310(2):237–241

    Article  CAS  Google Scholar 

  50. Chiozzone R, González R, Kremer C, Cerdá MF, Armentano D, De Munno G, Martínez-Lillo J, Faus J (2007) A novel series of rhenium-bipyrimidine complexes: synthesis, crystal structure and electrochemical properties. Dalton Trans 6:653–660

    Article  Google Scholar 

  51. Singh PR, Lusiak P, Volkert WA, Ketring AR, Holmes RA, Katti KV (1995) Transition metal chemistry of main group hydrazides, part 14: evaluation of new Tc-99m chelates of thiol functionalized phosphorus hydrazides. Nucl Med Biol 22(7):849–857

    Article  CAS  PubMed  Google Scholar 

  52. Katti KV, Singh PR, Volkert WA, Ketring AR, Katti KK (1992) A new neutral-lipophilic 99mTc complex with a bis-hydrazide-phosphine (BHP) ligand. Int J Radiat Appl Instrum Part A Appl Radiat Isot 43(9):1151–1154

    Article  CAS  Google Scholar 

  53. Dablemont C, Proust A, Thouvenot R, Afonso C, Fournier F, Tabet J (2004) Functionalization of polyoxometalates: from lindqvist to keggin derivatives. 1. Synthesis, solution studies, and spectroscopic and ESI Mass spectrometry characterization of the rhenium phenylimido tungstophosphate [PW11O39{ReNC6H5}]4. Inorg Chem 43(11):3514–3520

    Article  CAS  PubMed  Google Scholar 

  54. Leggett CJ, Parker BF, Teat SJ, Zhang Z, Dau PD, Lukens WW, Peterson SM, Cardenas AJP, Warner MG, Gibson JK, Arnold J, Rao L (2016) Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution. Chem Sci 7(4):2775–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1732107, U1867205, 11775153, 11575122) and the International Collaboration Project of Science and Technology Program of Sichuan Province, China (Project No. 2017HH0056). We also thank the Comprehensive training platform of specialized laboratory, and the Testing Center, College of Chemistry, Sichuan University for financial and technical support. We appreciate Dr. Jing Zhang at BSRF (Institute of High Energy Physics, Chinese Academy of Sciences) for support in the EXAFS analysis, Dr. Liang Xian and Dr. Bo Wang at Radiochemistry Department, China Institute of Atomic Energy for support in 99Tc experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanqin Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1739 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, A., Fu, Z., Yin, Z. et al. The coordination of low-valent Re/Tc with glutarimide dioxime and the fate of Tc in aqueous solution: spectroscopy, ESI–MS and EXAFS. J Radioanal Nucl Chem 328, 1279–1289 (2021). https://doi.org/10.1007/s10967-021-07738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07738-4

Keywords

Navigation