Skip to main content
Log in

Investigation of thorium (IV) adsorptive behavior onto functionalized magnetite nanoparticles

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The potential of magnetite nanoparticles functionalized with oleic acid (MNPOA) and bis(2,4,4-trimethylpentyl)dithiophosphinic acid (MNPDTPA) as efficient thorium adsorbents were evaluated. The experimental factors that control thorium adsorption capacity, e.g. pH, adsorption time, thorium initial concentration, and temperature were investigated. The adsorption data of both adsorbents fitted best to pseudo-first-order and Freundlich models. Maximum adsorption capacity at 25 °C was 370 and 454 mg g−1 for MNPOA and MNPDTPA, respectively. Temperature dependency of thorium adsorption and thermodynamics parameters were investigated. The results declared the spontaneity, feasibility, and exothermic nature of the adsorption process demonstrating that MNPOA and MNPDTPA can be used as economic alternatives for the efficient thorium removal from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vijayan PK, Dulera IV, Krishnani PD, Vaze KK, Basu S, Sinha RK (2016) Overview of the thorium programme in India. In: Revol JP, Bourquin M, Kadi Y, Lillestol E, de Mestral JC, Samec K (eds) Thorium energy for the world. Springer, Cham, pp 59–69

    Google Scholar 

  2. Broujeni BR, Nilchi A, Hassani AH, Saberi R (2019) Comparative adsorption study of Th4+ from aqueous solution by hydrothermally synthesized iron and aluminum oxide nanoparticles. Int J Environ Sci Technol 16:4069–4082

    Google Scholar 

  3. Al-Massaedh AA, Khalili FI (2021) Removal of thorium(IV) ions from aqueous solution by polyacrylamide-based monoliths: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 327:1201–2121

    CAS  Google Scholar 

  4. Findeiß MJ, Schäffer A (2017) Fate and environmental impact of thorium residues during rare earth processing. J Sustain Metall 3:179–189

    Google Scholar 

  5. Varala S, Kumari A, Dharanija B, Bhargava SK, Parthasarathy R, Satyavathi B (2016) Removal of thorium (IV) from aqueous solutions by deoiled karanja seed cake: optimization using Taguchi method, equilibrium, kinetic and thermodynamic studies. J Environ Chem Eng 4:405–417

    CAS  Google Scholar 

  6. Chen T, Zhang N, Xu Z, Hu X, Ding Z (2019) Integrated comparisons of thorium(IV) adsorption onto alkali-treated duckweed biomass and duckweed-derived hydrothermal and pyrolytic biochar. Environ Sci Pollut Res 26:2523–2530

    CAS  Google Scholar 

  7. Chung KW, Yoon H, Kim C, Lee J, Jyothi RK (2020) Solvent extraction, separation and recovery of thorium from Korean monazite leach liquors for nuclear industry applications. Ind Eng Chem Res 83:72–80

    CAS  Google Scholar 

  8. Osmanlioglu AE (2018) Decontamination of radioactive wastewater by two-staged chemical precipitation. Nucl Eng Technol 50:886–889

    CAS  Google Scholar 

  9. Chen Y, Wei Y, He L, Tang F (2016) Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin. J Chromatog A 1466:37–41

    CAS  Google Scholar 

  10. Zeng G, He Y, Zhan Y, Zhang L, Pan Y, Zhang C, Yu Z (2016) Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J Hazard Mater 5:60–72

    Google Scholar 

  11. Atta AM, Akl ZF (2015) Removal of thorium from water using modified magnetite nanoparticles capped with rosin amidoxime. Mater Chem Phys 163:253–261

    CAS  Google Scholar 

  12. Kedari CS, Pandit SS, Gandhi PM (2013) Separation by competitive transport of uranium(VI) and thorium(IV) nitrates across supported renewable liquid membrane containing trioctylphosphine oxide as metal carrier. J Membr Sci 430:188–195

    CAS  Google Scholar 

  13. Kuruc J, Strisovska J, Galanda D (2002) Secondary ion mass spectrometry and alpha-spectrometry of electrodeposited thorium film. J Radioanal Nucl Chem 292:973–981

    Google Scholar 

  14. Tan J, Wang Y, Liu M, He C (2017) Adsorption of thorium from aqueous solution by poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol). J Radioanal Nucl Chem 314:2243–2252

    CAS  Google Scholar 

  15. Sen Q, Shun L, Yamin D, Xiang S, Yanliang W, Yinglinb S, Xiaoqi S (2017) A high-performance impregnated resin for recovering thorium from radioactive rare earth waste residue. J Mol Liq 237:380–386

    Google Scholar 

  16. Tuzen M, Sarı A, Saleh TA (2020) Synthesis, characterization and evaluation of carbon nanofiber modified-polymer for ultra-removal of thorium ions from aquatic media. Chem Eng Res Des 163:76–84

    CAS  Google Scholar 

  17. Yang J, Hou B, Wang J, Tian B, Bi J, Wang N, Li X, Huang X (2019) Review, nanomaterials for the removal of heavy metals from wastewater. Nanomaterials. 9(3):424

    CAS  PubMed Central  Google Scholar 

  18. Nujić M, Habuda-Stanić M (2019) Toxic metal ions in drinking water and effective removal using graphene oxide nanocomposite. Springer international publishing, Cham, Switzerland

    Google Scholar 

  19. Sadegh H, Ali GAM, Gupta VK, Makhlouf AH, Shahryari-ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostructure Chem 7:1–14

    CAS  Google Scholar 

  20. Gutierrez AM, Dziubla TD, Hilt JZ (2017) Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev Environ Health 32:111–117

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang WN, Ma RY, Wu QH, Wang C, Wang Z (2013) Magnetic microsphere confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatography–fluorescence analysis. J Chromatogr A 1293:20–27

    CAS  PubMed  Google Scholar 

  22. Bloemen M, Brullot W, Luong TT, Geukens N, Gils A, Verbiest T (2012) Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J Nanopart Res 14:1100–1105

    PubMed  PubMed Central  Google Scholar 

  23. Zolfonoun E, Yousefi SR (2015) Sorption and preconcentration of uranium and thorium from aqueous solutions using multi-walled carbon nanotubes decorated with magnetic nanoparticles. Radiochim Acta 103(835):841

    Google Scholar 

  24. Nath D (2017) Nanomaterial for the management of radioactive waste. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer international publishing, Cham, pp 1–18

    Google Scholar 

  25. Karimi M, Milani SA, Abolgashemi H (2016) Kinetic and isotherm analyses for thorium (IV) adsorptive removal from aqueous solutions by modified magnetite nanoparticle using response surface methodology (RSM). J Nucl Mater 479:174–183

    CAS  Google Scholar 

  26. El-Hefny NE, Daoud JA (2004) Extraction and separation of thorium(IV) and praseodymium (III) with CYANEX 301 and CYANEX 302 from nitrate medium. J Radioanal Nucl Chem 261:357–363

    CAS  Google Scholar 

  27. Basualto C, Gaete J, Molina L, Valenzuela F, Yañez C, Marco JF (2015) Lanthanide sorbent based on magnetite nanoparticles functionalized with organophosphorus extractants. Sci Technol Adv Mater 16:035010

    PubMed  PubMed Central  Google Scholar 

  28. Khan MH, Ali A, Khan NN (2001) Spectrophotometric determination of thorium with disodium salt of Arsenazo III in perchloric acid. J Radioanal Nucl Chem 250:353–357

    CAS  Google Scholar 

  29. Gado MA (2018) Sorption of thorium using magnetic graphene oxide polypyrrole composite synthesized from natural source. Sep Sci Technol 53:2016–2033

    CAS  Google Scholar 

  30. Lee S, Harris MT (2006) Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents. J Colloid Interface Sci 293:401–408

    CAS  PubMed  Google Scholar 

  31. Zhang L, He R, Gu H (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253:2611–2617

    CAS  Google Scholar 

  32. Yin N, Ai Y, Xu Y, Ouyang Y, Yang P (2020) Preparation of magnetic biomass-carbon aerogel and its application for adsorption of uranium(VI). J Radioanal Nucl Chem 326:1307–1321

    CAS  Google Scholar 

  33. Lü L, Chen L, Shao W, Luo F (2010) Equilibrium and kinetic modeling of Pb(II) biosorption by a chemically modified orange peel containing Cyanex 272. J Chem Eng Data 55:4147–4153

    Google Scholar 

  34. Yang K, Peng H, Wen Y, Li N (2010) Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl Surf Sci 256:3093–3097

    CAS  Google Scholar 

  35. Bootdee K, Grady B (2012) Synthesis and encapsulation of magnetite nanoparticles in PLGA: effect of amount of PLGA oncharacteristics of encapsulated nanoparticles. Polym Bull 69:795–806

    CAS  Google Scholar 

  36. Gasser MS, El-Sherif E, Mekhamer HS, Abdel Rahman RO (2020) Assessment of Cyanex 301 impregnated resin for its potential use to remove cobalt from aqueous solutions. Environ Res 185:109402

    CAS  PubMed  Google Scholar 

  37. Kumar JR, Reddy BR, Reddy KJ, Reddy AV (2007) Liquid-Liquid extraction of tetravalent hafnium from acidic chloride solutions using bis(2,4,4-trimethylpentyl) dithiophosphinic acid. Sep Sci Technol 42:865–877

    CAS  Google Scholar 

  38. Wieszczycka K, Tomczyk W (2011) Degradation of organothiophosphorous extractant Cyanex 301. J Hazard Mater 192:530–537

    CAS  PubMed  Google Scholar 

  39. Singhal P, Vats BG, Yadav A, Pulhani V (2020) Efficient extraction of uranium from environmental samples using phosphoramide functionalized magnetic nanoparticles: understanding adsorption and binding mechanisms. J Hazard Mater 384:121353

    CAS  PubMed  Google Scholar 

  40. Anirudhan TS, Suchithra PS, Senan P, Tharun AR (2012) Kinetic equilibrium pro-files of adsorptive recovery of thorium (IV) from aqueous solutions using poly(methacrylic acid) grafted cellulose/bentonite superabsorbent composite. Ind Eng Chem Res 5:4825–4836

    Google Scholar 

  41. Morsy AMA (2017) Performance of magnetic talc titanium oxide composite for thorium ions adsorption from acidic solution. Environ Technol Innov 8:399–410

    Google Scholar 

  42. Moulin C, Amekraz B, Hubert S, Moulin V (2001) Study of thorium hydrolysis species by electrosprayionization mass spectrometry. Anal Chim Acta 441:269–279

    CAS  Google Scholar 

  43. Lagergren S, Svenska BK (1898) On the theory of so-called adsorption of materials. R Swed Acad Sci Doc 24:1–13

    Google Scholar 

  44. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Proc Biochem 34:451–465

    CAS  Google Scholar 

  45. Ouyang D, Zhuo Y, Hu L, Zeng Q, Hu Y, He Z (2019) Research on the adsorption behavior of heavy metal ions by porous material prepared with silicate tailings. Miner 9:291

    CAS  Google Scholar 

  46. Abd El-Magied MO, Elshehy EA, Manaa EA, Tolba AA, Atia AA (2016) Kinetics and thermodynamics studies on the recovery of thorium ions using amino resins with magnetic properties. Ind Eng Chem Res 55:11338–11345

    CAS  Google Scholar 

  47. Langmuir I (1916) The constitutional and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    CAS  Google Scholar 

  48. Freundlich MHF (1906) Over the adsorption in solution. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  49. Bhalara PD, Punetha D, Balasubramanian K (2015) Kinetic and isotherm analysis for selective thorium(IV) retrieval from aqueous environment using eco-friendly cellulose composite. Int J Environ Sci Technol 12:3095–3106

    CAS  Google Scholar 

  50. Öter C, Zorer OS (2019) Adsorption behaviours of Th(IV) and U(IV) using nitric acid (HNO3)modified activated carbon equilibrium thermodynamic and kinetic studies. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1691184

    Article  Google Scholar 

  51. Al-Senani GM, Al-Kadhi N (2020) The synthesis and effect of silver nanoparticles on the adsorption of Cu2+ from aqueous solutions. Appl Sci 10:4840

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab F. Akl.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akl, Z.F., Ezat, A. Investigation of thorium (IV) adsorptive behavior onto functionalized magnetite nanoparticles. J Radioanal Nucl Chem 328, 1291–1300 (2021). https://doi.org/10.1007/s10967-021-07729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07729-5

Keywords

Navigation