Skip to main content
Log in

Electrolytic and ozone aided destruction of oxalate ions in plutonium oxalate supernatant of the PUREX process: A comparative study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The article describes an efficient and straight forward method for the destruction of oxalate ions in the plutonium oxalate supernatant stream generated during the reprocessing of FBTR spent fuel, using ozone and electrolysis without any redox intermediates/catalyst at room temperature. The influencing parameters such as concentration of nitric acid, current density and temperature were studied. The destruction was achieved in 4 and 4.5 h, respectively using ozone and electrolysis. These methods have significant advantages due to the chemically benign nature of the oxalate destructed stream for all the downstream fuel cycle processes and the feasibility to automate these process steps in a radiochemical plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Natarajan R (2017) Reprocessing of spent nuclear fuel in India: present challenges and future programme. Progr Nucl Energy 101:118

    Article  CAS  Google Scholar 

  2. Wick OJ (1967) Plutonium handbook, vol 2. Gordon and Breach Science Publishers, London

    Google Scholar 

  3. Facer JF, Harmon KM (1954) Precipitation of Plutonium(IV) Oxalate. USAEC Reports. HW-31186 and 31188

  4. Rao VK, Pius IC, Subbarao M, Chinnusamy A, Natarajan PR (1986) Precipitation of plutonium from homogeneous solutions. J Radioanal Nucl Chem Articles 100:129

    Article  CAS  Google Scholar 

  5. Cleveland JM (1970) The chemistry of Plutonium. Gorden and Breach Science Publ, New York, pp 527–528

    Google Scholar 

  6. Sukumar S, Sharma PK, Govindan P, Subbarao RV (2013) Purification of uranium product from plutonium contamination using acetohydroxamic acid based process. J Radioanal Nucl Chem 295:191–196

    Article  CAS  Google Scholar 

  7. Nelson DJ, Reading LM, Christenson CW (1954) Destruction of oxalic acid by activated sludge. Sewage Ind Wastes 26:1126

    CAS  Google Scholar 

  8. Stroller SM, Richards RB (1961) Reactor Hand Book, vol 2. Inter Science Publ, New York

    Google Scholar 

  9. Cooper VR (1952) Separation Technology Unit-Process Progress Report for December, 1951 HW-23224

  10. Purushotham B, Ratnesh Kumar T (2016) Destruction of oxalate ion in plutonium oxalate supernatant using pressure drop method. In: Proceeding of DAE-BRNS theme meeting 75th year of the discovery of Pu239, PLUTONIUM 75, held at IGCAR, Kalpakkam, May 23–25

  11. Mailen JC, Tallent OK, Arwood PC (1981) Destruction of oxalate by reaction with hydrogen peroxide. Report. ORNL/TM-7474

  12. Chung D-Y, Kim E-H, Shin Y-J, Yoo J-H, Choi C-S, Kim J-D (1995) Decomposition of oxalate by hydrogen peroxide in aqueous solution. J Radioanal Nucl Chem Lett 201(6):495–507

    Article  CAS  Google Scholar 

  13. Kim E-H, Chung D-Y, Park J-H, Yoo J-H (2000) Dissolution of oxalate precipitate and destruction of oxalate Ion by hydrogen peroxide in nitric acid solution. J Nucl Sci Technol 37(7):601–607

    Article  CAS  Google Scholar 

  14. Mason C, Brown TL, Buchanan D, Maher CJ, Morris D, Taylor RJ (2016) The decomposition of oxalic acid in nitric acid. J Soln Chem 45(3):325–333

    Article  CAS  Google Scholar 

  15. Kubota M (1982) Decomposition of oxalic acid with nitric acid. J Radioanal Chem 75(1–2):39–49

    Article  CAS  Google Scholar 

  16. Kubota M, Miyashiro H (1987) Methods for decomposing oxalic acid and/or oxalic acid ion. Japanese Patent JP 62-176593A

  17. Nash C (2012) Literature review for oxalate oxidation processes and plutonium oxalate solubility. Report SRNL-STI-2012-00003

  18. Miyashiro H, Kubota M (1986) Development of partitioning method: fundamental study on oxalate precipitation method. Rep. JAERI-M-86-014

  19. Pawar RC, Agrawal GL, Mzhajana AV (1978) Kinetics of oxidation of formic acid and oxalic acid by chromic acid. Indian J Chem 16A:984

    CAS  Google Scholar 

  20. Barek S, Berka A, Civisora D (1984) Kinetic analysis of oxalic and citric acids mixtures with manganese(III) sulphate. Coll Czechoslovak Chem Commun 49:954

    Article  CAS  Google Scholar 

  21. Nayak SK, Srinivasan TG, VasudevaRao PR, Mathews CK (1988) Photochemical destruction of organic compounds formed during dissolution of uranium carbide in nitric acid. Sep Sci Technol 23(12–13):1551–1561

    Article  CAS  Google Scholar 

  22. Francis TW, Beverly YL (1995) Photolytic destruction of oxalate in aqueous mixed waste. UCRL-JC-119739

  23. Kim E-H, Chung D-Y, Kwon S-W, Yoo J-H (1999) Photochemical decomposition of oxalate precipitates in nitric acid medium. Korean J Chem Eng 16(3):351–356

    Article  CAS  Google Scholar 

  24. Nogami M, Sakashita T, Suzuki K, Ikeda Y (2002) Decomposition of oxalate in low level liquid waste using UV irradiation. J Nucl Sci Technol 3:371–374

    Article  Google Scholar 

  25. Kim J-H, Lee H-K, Park Y-J, Lee S-B, Choi S-J, Oh W, Kim H-S, Kim C-R, Kim K-C, Seo B-C (2019) Studies on decomposition behaviour of oxalic acid waste by UVC photo-Fenton advanced oxidation process. Nucl Eng Technol 51(8):1957–1963

    Article  CAS  Google Scholar 

  26. Rasalinga S, Peng R, Koodali RT (2014) Removal of hazardous pollutants from waste waters: application of TiO2-SiO2 mixed oxide materials. J Nanomater, ID 617405. https://doi.org/10.1155/2014/617405

  27. Martinez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340

    Article  CAS  Google Scholar 

  28. Remondino M, Valdenassi L (2018) Different uses of ozone: environmental and corporate sustainability. Literat Rev Case Study Sustain 10:4783

    Google Scholar 

  29. Glaze WH (1987) Drinking water treatment with ozone. Environ Sci Technol 21(3):224–230

    Article  CAS  Google Scholar 

  30. Pandey NK, Velavendan P, Reshmi V, KamachiMudali U, Natarajan R (2010) Electrochemical oxidation process for the destruction of oxalate ions in plutonium oxalate supernatant. CHEMCON-2010

  31. Michael KM, Talnikar SG, Jambunathan U, Kapoor SC, Ramanujam R, Venkataraman N (1996) Electrolytic destruction of oxalate ions in plutonium oxalate supernatant. BARC Report E/017

  32. Palamalai A, Rajan SK, Chinnusamy A, Sampath M, Varghese PK, Ravi TN (1991) Development of an electro-oxidative dissolution technique for fast reactor carbide fuels. Radiochim Acta 55:29

    Article  CAS  Google Scholar 

  33. Almon AC, Buchanan BR (1990) Electrolytic destruction of spent tributyl phosphate extractant using silver catalyzed electrochemical oxidation. Report WSRC-MS-90-123, DE 91 005133

  34. Charoensri A, Kobayshi F, Kimura A, Ishii J (2006) Electrochemical oxidation process for mineralization of solvent. J Met Mater Miner 16:57

    CAS  Google Scholar 

  35. Elizabeth A, Lawrence F, Velavendan P, Srinivasan R, Mallika C, Kamachi Mudali U, Natarajan R (2011) Electrochemical destruction of 30% TBP in NPH. In: Proceedings of international symposium cum. workshops on electrochemistry (ISEAC 2011), held at Goa, Dec. 7–10, pp 179–182

  36. Steele DF (1989) A novel approach to organic waste disposal. Atom 393:10

    Google Scholar 

  37. Bringmann J, Ebert K, Galla U, Schmieder H (1995) Electrochemical mediators for total oxidation of chlorinated hydrocarbons: formation kinetics of Ag(II), Co(III) and Ce(IV). J Appl Elec Chem 25:846

    CAS  Google Scholar 

  38. Brunet R, Bourbigot MM, Dore M (1984) Oxidation of organic compounds through the combination of ozone and hydrogen peroxide. Ozone Sci Eng 6:163

    Article  CAS  Google Scholar 

  39. Travaini R, Marangon-Jardim C, Colodette JL, Morales-Otero M, Bolado-Rodriguez S (2015) Ozonolysis, Chapter 7

  40. Ganesh S, Velavendan P, Chinnusamy A, Pandey NK, Kamachi Mudali U (2015) Oxidative destruction of dissolved TBP in simulated raffinate streams of nuclear fuel reprocessing. In: Proceeding of 12th symposium on Nucl and Radiochem. Held at BARC, Mumbai, Feb. 9–13, B-66, pp 228–289

  41. Seliverstov AF, Lagunova Y, Earshot BG, Shashkovskii SG (2017) Oxidative decomposition of oxalate ion with ozone in aqueous solution. Russ J Gen Chem 87:2533–2536

    Article  CAS  Google Scholar 

  42. Geetha R, Ahmed MK, Velavendan P, Pandey NK, Natarajan R (2003) Application of ozone in nuclear fuel reprocessing-studies on destruction of residual carbon in solutions of uranium carbide and uranium plutonium mixed carbide. In: Proceeding of nuclear and radiochemical symposium (NUCAR 2003) held at Kalpakkam, pp 169–170

  43. Vogel’s I (2000) A text-book of quantitative inorganic analysis-oxidation with potassium permanganate, 6th edn. ELBS and Longmans, Green & Co Ltd., pp. 367, 369, 371

  44. Kalbus GE, Lieu VT (2014) A spectrophotometric study of the permanganate-oxalate reaction. J Chem Educ 81(1):100–103

    Article  Google Scholar 

  45. Ahmed MK, Geetha R, Pandey NK, Murugesan R, Koganti SB, Saha B, Sahoo P, Sundarajan MK (2000) Conductometric determination of carbon in uranium carbide and its solution in nitric acid. Talanta 52(5):885–889

    Article  CAS  Google Scholar 

  46. Eberle AR, Lerner MW, Goldbeck CG, Rodden CJ (1970) Titrimetric determination of uranium in product fuel and scrap materials after ferrous ion reduction in phosphoric acid. U.S. Atomic Energy Commission, New Brunswick, NJ, NBL-252

  47. Rao CL, Nair GM, Singh NP, Ramaniah MV, Srinivasan N (1971) Indirect potentiometric method for the determination of plutonium. F Anal Chem 254:126

    Article  CAS  Google Scholar 

  48. Ganesh S, Khan F, Ahmed MK, Pandey SK (2011) Potentiometric determination of free acidity in presence of hydrolysable ions and sequential determination of hydrazine. Talanta 85:958

    Article  CAS  Google Scholar 

  49. Marra JC, Cozzi AD, Pierce RA, Pareizs JM (2001) Cerium as a surrogate in the plutonium immobilized form. WSRC-MS-2001-00007

  50. Kim HS, Joung CY, Lee BH, Oh JY, Koo YH, Heimgartner P (2008) Applicability of CeO2 as a surrogate for PuO2 in a MOX fuel development. J Nucl Mater 378(1):98–104

    Article  CAS  Google Scholar 

  51. Qiao J, Zhang H, Ye G, Tang H, Ouyang Y (2008) Electrolysis of oxalic acid in simulative mother liquor generated from plutonium(IV) oxalate precipitation process. Atomic Energy Sci Technol (Chinese) 42:974–979

    CAS  Google Scholar 

  52. Johnson JW, Wroblowa H, Bockris JOM (1964) The mechanism of the electrochemical oxidation of oxalic acid. Electrochim Acta 9:639–651

    Article  CAS  Google Scholar 

  53. Giner J (1961) Die Anodische oxidation von oxalsaureanplatin-I. Passivierungeseffekte an elektrodenausglattemplatin Electrochim Acta 4:42

    Article  CAS  Google Scholar 

  54. Shams El Din AM (1961) Molten salt electrolysis—I. Chlorine over-potential on carbon in LiCl-KCl eutectic. Electrochim Acta 4:242–250

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Desigan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, S., Desigan, N., Chinnusamy, A. et al. Electrolytic and ozone aided destruction of oxalate ions in plutonium oxalate supernatant of the PUREX process: A comparative study. J Radioanal Nucl Chem 328, 857–867 (2021). https://doi.org/10.1007/s10967-021-07714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07714-y

Keywords

Navigation