Skip to main content
Log in

One-pot synthesis and properties of Mn-doped maghemite nanoparticles using acetylacetonate precursors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A simple one-pot synthesis was utilized to prepare Mn-doped maghemite nanoparticles. A homogenized mixture of Mn- and Fe-acetylacetonates was heated in air atmosphere at 300 °C to produce Mn-doped maghemite. XRD showed only the presence of a spinel crystal structure with a linear increase of the unit-cell volume up to 20 mol% of the Mn dopant. Possible structural changes with increased Mn doping are briefly discussed.57Fe Mössbauer spectra recorded at 77 K were fitted with two sextets of lines corresponding to Fe3+ ions at A-tetrahedral and B-octahedral sites in maghemite. FE SEM images showed that Mn-doped maghemite nanoparticles were of good uniformity, with the crystallite size varying from 24 to 35 nm, as determined by XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tuček J, Zboril R, Petridis D (2006) Maghemite nanoparticles by view of Mössbauer spectroscopy. J Nanosci Nanotechnol 6:926–947

    Article  Google Scholar 

  2. Musić S, Ristić M, Popović S (1988) Mössbauer spectroscopic and X-ray diffraction study of the thermal decomposition of Fe(CH3COO)2 and FeOH(CH3COO)2. J Radioanal Nucl Chem Artic 121:61–71

    Article  Google Scholar 

  3. Musić S, Gotić M, Popović S, Czakó-Nagy I (1994) Formation of γ-Fe2O3 by thermal decomposition of a mixture of Fe(II)- and Fe(III)-oxalate salts. Mater Lett 20:143–148

    Article  Google Scholar 

  4. Meledandri CJ, Stolarczyk JK, Ghosh S, Brougham DF (2008) Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties. Langmuir 24:14159–14165

    Article  CAS  Google Scholar 

  5. Tan Y, Zhuang Z, Peng Q, Li Y (2008) Room-temperature soft magnetic iron oxide nanocrystals: synthesis, characterization, and size-dependent magnetic properties. Chem Mater 20:5029–5034

    Article  CAS  Google Scholar 

  6. Bae DR, Lee Y-J, Kim DK, Lee SW, Chang KS, Yi G-R et al (2014) Nonhydrolytic sol–gel and gram-scale synthesis of surfactant-free maghemite nanoparticles with high surface area. J Sol-Gel Sci Technol 71:606–610

    Article  CAS  Google Scholar 

  7. Galukhin AV, Erokhin AA, Osin YN, Nurgaliev DK (2015) Catalytic aquathermolysis of heavy oil with iron tris(acetylacetonate): changes of heavy oil composition and in situ formation of magnetic nanoparticles. Energy Fuels 29:4768–4773

    Article  CAS  Google Scholar 

  8. Teleki A, Suter M, Kidambi PR, Ergeneman O, Krumeich F, Nelson BJ et al (2009) Hermetically coated superparamagnetic Fe2O3 particles with SiO2 nanofilms. Chem Mater 21:2094–2100

    Article  CAS  Google Scholar 

  9. Lyadov AS, Kochubeev AA, Koleva LD, Parenago OP, Khadzhiev SN (2016) Synthesis of nanosized iron(III) oxide and study of its formation features. Russ J Inorg Chem 61:1387–1391

    Article  CAS  Google Scholar 

  10. Pal B, Sharon M (2000) Preparation of iron oxide thin film by metal organic deposition from Fe(III)-acetylacetonate: a study of photocatalytic properties. Thin Solid Films 379:83–88

    Article  CAS  Google Scholar 

  11. Hoene JV, Charles RG, Hickam WM (1958) Thermal decomposition of metal acetylacetonates: Mass spectrometer studies. J Phys Chem 62:1098–1101

    Article  Google Scholar 

  12. Ismail HM (1991) A thermoanalytic study of metal acetylacetonates. J Anal Appl Pyrolysis 21:315–326

    Article  CAS  Google Scholar 

  13. Lalancette RA, Syzdek D, Grebowicz J, Arslan E, Bernal I (2019) The thermal decomposition and analyses of metal tris-acetylacetonates. J Therm Anal Calorim 135:3463–3470

    Article  CAS  Google Scholar 

  14. Effenberger FB, Couto RA, Kiyohara PK, Machado G, Masunaga SH, Jardim RF et al (2017) Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate. Nanotechnology 28:115603

    Article  Google Scholar 

  15. Schubert JS, Popovic J, Haselmann GM, Nandan SP, Wang J, Giesriegl A et al (2019) Immobilization of Co, Mn, Ni and Fe oxide co-catalysts on TiO2 for photocatalytic water splitting reactions. J Mater Chem A 7:18568–18579

    Article  CAS  Google Scholar 

  16. Nolis GM, Bolotnikov JM, Cabana J (2018) Control of size and composition of colloidal nanocrystals of manganese oxide. Inorg Chem 57:12900–12907

    Article  CAS  Google Scholar 

  17. Haneda K, Morrish AH. Magnetite to maghemite transformation in ultrafine particles. J Phys Colloq. 1977;38:C1-321-C1-323

    Article  Google Scholar 

  18. Musić S, Czako-Nagy I, Popović S, Vertes A, Tonković M (1986) Mossbauer spectroscopy, X-ray diffraction and IR spectroscopy of oxide precipitates formed from FeSO4 solution. Croat Chem Acta 59:833–851

    Google Scholar 

  19. da Costa GM, De Grave E, Bowen LH, de Bakker PMA, Vandenberghe RE (1995) Variable-temperature Mössbauer spectroscopy of nano-sized maghemite and Al-substituted maghemites. Clays Clay Miner 43:562–568

    Article  Google Scholar 

  20. Predoi D, Kuncser V, Filoti G (2004) Magnetic behaviour of maghemite nanoparticles studied by Mössbauer spectroscopy. Romanian Rep Phys 56:373–378

    Google Scholar 

  21. Sharifi Dehsari H, Ksenofontov V, Möller A, Jakob G, Asadi K (2018) Determining magnetite/maghemite composition and core–shell nanostructure from magnetization curve for iron oxide nanoparticles. J Phys Chem C 122:28292–28301

    Article  Google Scholar 

  22. da Costa GM, De Grave E, Bowen LH, Vandenberghe RE, de Bakker PMA (1994) The center shift in Mössbauer spectra of maghemite and aluminum maghemites. Clays Clay Miner 42:628–633

    Article  Google Scholar 

  23. da Costa GM, De Grave E, Bowen LH, de Bakker PMA, Vandenberghe RE (1995) Temperature dependence of the hyperfine parameters of maghemite and Al-substituted maghemites. Phys Chem Miner 22:178–185

    Article  Google Scholar 

  24. Grenèche J-M. (2013) The contribution of 57Fe Mössbauer spectrometry to investigate magnetic nanomaterials. In: Yoshida Y, Langouche G, editors. Mössbauer Spectrosc Tutor Book [Internet]. Berlin, Heidelberg: Springer;  p. 187–241.  https://doi.org/10.1007/978-3-642-32220-4_4

  25. Ramos Guivar JA, Bustamante A, Flores J, Mejía Santillan M, Osorio AM, Martínez AI et al (2014) Mössbauer study of intermediate superparamagnetic relaxation of maghemite (γ-Fe2O3) nanoparticles. Hyperfine Interact 224:89–97

  26. Murad E, Johnston JH. (1987) Iron oxides and oxyhydroxides. In: Long GJ, Grandjean F, editors. Mössbauer Spectrosc Appl Inorg Chem  Boston, MA: Springer US;  p. 507–82

  27. Oh S. (1997) Characterization of iron oxides and atmospheric corrosion of steel. Phys Theses Diss [Internet] ; Available from:https://digitalcommons.odu.edu/physics_etds/76

  28. Tronc E, Jolivet JP (1986) Surface effects on magnetically coupled ”γ-Fe2O3” colloids. Hyperfine Interact 28:525–528

    Article  CAS  Google Scholar 

  29. Tronc E, Jolivet J-P, Livage J (1987) γ-Fe2O3 colloids: clustering and Mössbauer effect. J Chem Res Synop. 1:136–7

    Google Scholar 

  30. Tronc E, Jolivet JP (1988) Clustering and magnetic coupling. J Phys Colloq 49:C8–C1823

    Article  Google Scholar 

  31. Dormann JL, Fiorani D, Tronc E. Magnetic relaxation in fine-particle systems. Adv Chem Phys [Internet]. John Wiley & Sons, Ltd; 1997 [cited 2020 Nov 26]. p. 283–494. Available from:https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/9780470141571.ch4

  32. Dormann JL, Fiorani D, Cherkaoui R, Tronc E, Lucari F, D’Orazio F et al (1999) From pure superparamagnetism to glass collective state in γ-Fe2O3 nanoparticle assemblies. J Magn Magn Mater 203:23–27

    Article  CAS  Google Scholar 

  33. Tronc E, Ezzir A, Cherkaoui R, Chanéac C, Noguès M, Kachkachi H et al (2000) Surface-related properties of γ-Fe2O3 nanoparticles. J Magn Magn Mater 221:63–79

    Article  CAS  Google Scholar 

  34. Siddique M, Butt NM (2010) Effect of particle size on degree of inversion in ferrites investigated by Mössbauer spectroscopy. Phys B Condens Matter 405:4211–4215

    Article  CAS  Google Scholar 

  35. Kwon W-H, Lee J-G, Lee Y-B, Chae K-P (2011) Synthesis and Magnetic Properties of Nano-sized Mn Ferrite Powder and Film. J Magn 16:27–30

    Article  Google Scholar 

  36. Velinov N, Petrova T, Genova I, Ivanov I, Tsoncheva T, Idakiev V et al (2017) Synthesis and Mössbauer spectroscopic investigation of copper-manganese ferrite catalysts for water-gas shift reaction and methanol decomposition. Mater Res Bull 95:556–562

    Article  CAS  Google Scholar 

  37. Makovec D, Kodre A, Arčon I, Drofenik M (2009) Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J Nanoparticle Res 11:1145–1158

    Article  CAS  Google Scholar 

  38. Takei H, Chiba S (1966) Vacancy Ordering in Epitaxially-Grown Single Crystals of γ-Fe2O3. J Phys Soc Jpn The Physical Society of Japan 21:1255–1263

    Article  Google Scholar 

  39. Yu L, Peng X, Li J, Ni F, Luan Z (2014) Removal of As (V) and As(III) from water using Mn-doped maghemite nanoparticles. Fresenius Environ Bull 23:508–515

    CAS  Google Scholar 

  40. Lee J, Kwak S-Y (2018) Mn-doped maghemite (γ-Fe2O3) from metal–organic framework accompanying redox reaction in a bimetallic system: the structural phase transitions and catalytic activity toward NOx removal. ACS Omega 3:2634–2640

    Article  CAS  Google Scholar 

  41. Wang C, Yang S, Chang H, Peng Y, Li J (2013) Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3. J Mol Catal Chem 376:13–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Croatian Science Foundation (Project No. IP-2016-06-8254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetozar Musić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marciuš, M., Ristić, M., Grenèche, JM. et al. One-pot synthesis and properties of Mn-doped maghemite nanoparticles using acetylacetonate precursors . J Radioanal Nucl Chem 328, 1181–1187 (2021). https://doi.org/10.1007/s10967-021-07712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07712-0

Keywords

Navigation