Skip to main content
Log in

Silver-doped MIL-101(Cr) for rapid and effective capture of iodide in water environment: exploration on adsorption mechanism

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To effectively protect the marine ecological environment, herein, the silver-loaded organometallic framework material ((MIL-101(Cr)@Ag) was synthesized to study the rapid enrichment of iodide ions. Under the best experimental conditions, the reaction was in adsorption equilibrium within 10 min, and the maximum adsorption capacity could attain 57 mg/g. The XPS and XRD analysis indicated that the iodide ions mainly interacted with silver atoms in MIL-101(Cr)@Ag to form AgI. The adsorption behavior was well fitted by the pseudo-second-order kinetic model and Langmuir isotherm model, showed that adsorption process was mainly monolayer chemisorption. Therefore, MIL-101(Cr)@Ag could be used as a potential material for removing iodide ions from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mcnally RJQ, Wakeford R, James PW, Basta NO, Alston RD, Pearce MS, Elliott AT (2016) A geographical study of thyroid cancer incidence in north-west England following the Windscale nuclear reactor fire of 1957. J Radiol Prot 36(4):934–952

    Article  CAS  Google Scholar 

  2. Han YY, Youk AO, Sasser H, Talbott E (2011) Cancer incidence among residents of the Three Mile Island accident area: 1982–1995. Environ Res 111(8):1230–1235

    Article  CAS  Google Scholar 

  3. Boehm BO, Steinert M, Dietrich JW, Peter RU, Belyi D, Wagemaker G, Rosinger S, Fliedner TM, Weiss MJ (2009) Thyroid examination in highly radiation-exposed workers after the Chernobyl accident. Eur J Endocrinol 160(4):625–630

    Article  CAS  Google Scholar 

  4. Xu C, Zhang S, Sugiyama Y, Ohte N, Ho YF, Fujitake N, Kaplan DI, Yeager CM, Schwehr K, Santschi PH (2016) Role of natural organic matter on iodine and 239,240 Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan. J Environ Raidoact 153(3):156–166

    Article  CAS  Google Scholar 

  5. Fabryka-Martin J, Bentley H, Elmore D, Airey PL (1985) Natural iodine-129 as an environmental tracer. Geochim Cosmochim Acta 49(2):337–347. https://doi.org/10.1016/0016-7037(85)90027-4

    Article  CAS  Google Scholar 

  6. Shimamoto YS, Takahashi Y, Terada Y (2011) Formation of organic iodine supplied as iodide in a soil-water system in Chiba. Jpn Environ Sci Technol 45(6):2086–2092. https://doi.org/10.1021/es1032162

    Article  CAS  Google Scholar 

  7. Sungwook C, Wooyong U, Minkyung K, Min-Gyu K (2013) Uptake mechanism for iodine species to black carbon. J Environ Sci Technol 47(18):10349–10355

    Google Scholar 

  8. Wong G (1991) The marine geochemistry of iodine. Rev Aquat Sci 4:45–73

    CAS  Google Scholar 

  9. Lee S-H, Takahashi Y (2020) Selective immobilization of iodide onto a novel bismuth-impregnated layered mixed metal oxide: Batch and EXAFS studies. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121223

    Article  PubMed  Google Scholar 

  10. Fuge R, Johnson CC (1986) The geochemistry of iodine—a review. Environ Geochem Health 8(2):31–54. https://doi.org/10.1007/bf02311063

    Article  CAS  PubMed  Google Scholar 

  11. Hou X, Povinec PP, Zhang L, Shi K, Biddulph D, Chang C-C, Fan Y, Golser R, Hou Y, Ješkovský M, Jull AJT, Liu Q, Luo M, Steier P, Zhou W (2013) Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. Environ Sci Technol 47(7):3091–3098. https://doi.org/10.1021/es304460k

    Article  CAS  PubMed  Google Scholar 

  12. Tietze S, Foreman MRS, Ekberg C (2013) Synthesis of I-131 labelled iodine species relevant during severe nuclear accidents in light water reactors. Radiochim Acta 101(10):675–680. https://doi.org/10.1524/ract.2013.2070

    Article  CAS  Google Scholar 

  13. Nakayama M, Sato A, Nakagawa K (2015) Selective sorption of iodide onto organo-MnO2 film and its electrochemical desorption and detection. Anal Chim Acta 877:64–70. https://doi.org/10.1016/j.aca.2015.03.041

    Article  CAS  PubMed  Google Scholar 

  14. Kodama H (1999) Removal of iodide ion from simulated radioactive liquid waste. Czech J Phys 49(1):971–977. https://doi.org/10.1007/s10582-999-1026-z

    Article  CAS  Google Scholar 

  15. Warchol J, Misaelides P, Petrus R, Zamboulis D (2006) Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J Hazard Mater 137(3):1410–1416. https://doi.org/10.1016/j.jhazmat.2006.04.028

    Article  CAS  PubMed  Google Scholar 

  16. Theiss FL, Couperthwaite SJ, Ayoko GA, Frost RL (2014) A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides. J Colloid Interface Sci 417:356–368. https://doi.org/10.1016/j.jcis.2013.11.040

    Article  CAS  PubMed  Google Scholar 

  17. Liang L, Li L (2007) Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants. J Radioanal Nucl Chem 273(1):221–226. https://doi.org/10.1007/s10967-007-0740-x

    Article  CAS  Google Scholar 

  18. Theiss FL, Ayoko GA, Frost RL (2017) Sorption of iodide (I-) from aqueous solution using Mg/Al layered double hydroxides. Mater Sci Eng C-Mater Biol Appl 77:1228–1234. https://doi.org/10.1016/j.msec.2017.03.284

    Article  CAS  PubMed  Google Scholar 

  19. Liu L, Liu W, Zhao X, Chen D, Cai R, Yang W, Komarneni S, Yang D (2014) Selective capture of iodide from solutions by microrosette-like delta-Bi2O3. ACS Appl Mater Interfaces 6(18):16082–16090. https://doi.org/10.1021/am504000n

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Jaroniec M (2017) SBA-15 templating synthesis of mesoporous bismuth oxide for selective removal of iodide. J Colloid Interface Sci 501:248–255. https://doi.org/10.1016/j.jcis.2017.04.063

    Article  CAS  PubMed  Google Scholar 

  21. Liu S, Kang S, Wang H, Wang G, Zhao H, Cai W (2016) Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances. Chem Eng J 289:219–230. https://doi.org/10.1016/j.cej.2015.12.101

    Article  CAS  Google Scholar 

  22. Kim T, Lee S-K, Lee S, Lee JS, Kim SW (2017) Development of silver nanoparticle-doped adsorbents for the separation and recovery of radioactive iodine from alkaline solutions. Appl Radiat Isot 129:215–221. https://doi.org/10.1016/j.apradiso.2017.07.033

    Article  CAS  PubMed  Google Scholar 

  23. Mao P, Qi L, Liu X, Liu Y, Jiao Y, Chen S, Yang Y (2017) Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water. J Hazard Mater 328:21–28. https://doi.org/10.1016/j.jhazmat.2016.12.065

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Gu P, Li X, Zhang G (2017) Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon. Chem Eng J 322:129–139. https://doi.org/10.1016/j.cej.2017.03.102

    Article  CAS  Google Scholar 

  25. Mao P, Liu Y, Liu X, Wang Y, Liang J, Zhou Q, Dai Y, Jiao Y, Chen S, Yang Y (2017) Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution. Chemosphere 180:317–325. https://doi.org/10.1016/j.chemosphere.2017.04.038

    Article  CAS  PubMed  Google Scholar 

  26. Zhang H, Gao X, Guo T, Li Q, Liu H, Ye X, Guo M, Wu Z (2011) Adsorption of iodide ions on a calcium alginate-silver chloride composite adsorbent. Colloids Surf A Physicochem Eng Asp 386(1–3):166–171. https://doi.org/10.1016/j.colsurfa.2011.07.014

    Article  CAS  Google Scholar 

  27. Mu W, Yu Q, Li X, Wei H, Jian Y (2017) Niobate nanofibers for simultaneous adsorptive removal of radioactive strontium and iodine from aqueous solution. J Alloy Compd 693:550–557. https://doi.org/10.1016/j.jallcom.2016.09.200

    Article  CAS  Google Scholar 

  28. Liu S, Wang N, Zhang Y, Li Y, Han Z, Na P (2015) Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation. J Hazard Mater 284:171–181. https://doi.org/10.1016/j.jhazmat.2014.10.054

    Article  CAS  PubMed  Google Scholar 

  29. Mao P, Qi B, Liu Y, Zhao L, Jiao Y, Zhang Y, Jiang Z, Li Q, Wang J, Chen S, Yang Y (2016) Ag-II doped MIL-101 and its adsorption of iodine with high speed in solution. J Solid State Chem 237:274–283. https://doi.org/10.1016/j.jssc.2016.02.030

    Article  CAS  Google Scholar 

  30. Zhao X, Han X, Li Z, Huang H, Liu D, Zhong C (2015) Enhanced removal of iodide from water induced by a metal-incorporated porous metal-organic framework. Appl Surf Sci 351:760–764. https://doi.org/10.1016/j.apsusc.2015.05.186

    Article  CAS  Google Scholar 

  31. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042. https://doi.org/10.1126/science.1116275

    Article  CAS  PubMed  Google Scholar 

  32. Bai Z-Q, Yuan L-Y, Zhu L, Liu Z-R, Chu S-Q, Zheng L-R, Zhang J, Chai Z-F, Shi W-Q (2015) Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J Mater Chem A 3(2):525–534. https://doi.org/10.1039/c4ta04878d

    Article  CAS  Google Scholar 

  33. Zhang J-Y, Zhang N, Zhang L, Fang Y, Deng W, Yu M, Wang Z, Li L, Liu X, Li J (2015) Adsorption of uranyl ions on amine-functionalization of MIL-101(Cr) nanoparticles by a facile coordination-based post-synthetic strategy and x-ray absorption spectroscopy studies. Sci Rep. https://doi.org/10.1038/srep13514

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhou X-P, Xu Z, Zeller M, Hunter AD (2009) Reversible uptake of HgCl2 in a porous coordination polymer based on the dual functions of carboxylate and thioether. Chem Commun 36:5439–5441. https://doi.org/10.1039/b910265e

    Article  CAS  Google Scholar 

  35. Ke F, Qiu L-G, Yuan Y-P, Peng F-M, Jiang X, Xie A-J, Shen Y-H, Zhu J-F (2011) Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J Hazard Mater 196:36–43. https://doi.org/10.1016/j.jhazmat.2011.08.069

    Article  CAS  PubMed  Google Scholar 

  36. Bagheri A, Taghizadeh M, Behbahani M, Asgharinezhad AA, Salarian M, Dehghani A, Ebrahimzadeh H, Amini MM (2012) Synthesis and characterization of magnetic metal-organic framework (MOF) as a novel sorbent, and its optimization by experimental design methodology for determination of palladium in environmental samples. Talanta 99:132–139. https://doi.org/10.1016/j.talanta.2012.05.030

    Article  CAS  PubMed  Google Scholar 

  37. Aijaz A, Karkamkar A, Choi YJ, Tsumori N, Roennebro E, Autrey T, Shioyama H, Xu Q (2012) Immobilizing highly catalytically active pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. J Am Chem Soc 134(34):13926–13929. https://doi.org/10.1021/ja3043905

    Article  CAS  PubMed  Google Scholar 

  38. Zhu Q-L, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135(28):10210–10213. https://doi.org/10.1021/ja403330m

    Article  CAS  PubMed  Google Scholar 

  39. Li D, Dai X, Zhang X, Zhuo H, Jiang Y, Yu Y-B, Zhang P, Huang X, Wang H (2017) Silver nanoparticles encapsulated by metal-organic-framework give the highest turnover frequencies of 105 h−1 for three component reaction by microwave-assisted heating. J J Catal 348:276–281

    Article  CAS  Google Scholar 

  40. Riebe B, Dultz S, Bunnenberg C (2005) Temperature effects on iodine adsorption on organo-clay minerals: I. Influence of pretreatment and adsorption temperature. Appl Clay Sci 28(1):9–16. https://doi.org/10.1016/j.clay.2004.01.004

    Article  CAS  Google Scholar 

  41. Bors J, Gorny A, Dultz S (1997) Iodide, caesium and strontium adsorption by organophilic vermiculite. J Clay Miner 32(1):21–28. https://doi.org/10.1180/claymin.1997.032.1.04

    Article  CAS  Google Scholar 

  42. Lu Y, Yan B (2014) Luminescent lanthanide barcodes based on postsynthetic modified nanoscale metal–organic frameworks. J Mater Chem C. https://doi.org/10.1039/C4TC01077A

    Article  Google Scholar 

  43. Hu Z, Khurana M, Seah YH, Zhang M, Guo Z, Zhao D (2015) Ionized Zr-MOFs for highly efficient post-combustion CO2 capture. Chem Eng Sci 124:61–69. https://doi.org/10.1016/j.ces.2014.09.032

    Article  CAS  Google Scholar 

  44. Zhao X, Han X, Li Z, Huang H, Liu D, Zhong C (2015) Enhanced removal of iodide from water induced by a metal-incorporated porous metal–organic framework. Appl Surf Sci 351:760–764. https://doi.org/10.1016/j.apsusc.2015.05.186

    Article  CAS  Google Scholar 

  45. Jayaram K, Murthy IYLN, Lalhruaitluanga H, Prasad MNV (2009) Biosorption of lead from aqueous solution by seed powder of Strychnos potatorum L. Colloids Surf, B 71(2):248–254. https://doi.org/10.1016/j.colsurfb.2009.02.016

    Article  CAS  Google Scholar 

  46. Sari A, Citak D, Tuzen M (2010) Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite. Chem Eng J 162(2):521–527. https://doi.org/10.1016/j.cej.2010.05.054

    Article  CAS  Google Scholar 

  47. Al Lafi AG, Assfour B, Assaad T (2020) Metal organic framework MIL-101(Cr): spectroscopic investigations to reveal iodine capture mechanism. J Inorg Organomet Polym Mater 30(4):1218–1230. https://doi.org/10.1007/s10904-019-01236-7

    Article  CAS  Google Scholar 

  48. Chen L, Zhao D, Chen S, Wang X, Chen C (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J Colloid Interface Sci 472:99–107. https://doi.org/10.1016/j.jcis.2016.03.044

    Article  CAS  PubMed  Google Scholar 

  49. Ye Z, Chen L, Liu C, Ning S, Wang X, Wei Y (2019) The rapid removal of iodide from aqueous solutions using a silica-based ion-exchange resin. React Funct Polym 135:52–57. https://doi.org/10.1016/j.reactfunctpolym.2018.12.002

    Article  CAS  Google Scholar 

  50. Mao P, Liu Y, Jiao Y, Chen S, Yang Y (2016) Enhanced uptake of iodide on Ag@Cu2O nanoparticles. Chemosphere 164:396–403. https://doi.org/10.1016/j.chemosphere.2016.08.116

    Article  CAS  PubMed  Google Scholar 

  51. Rong J, Zhao Z, Jing Z, Zhang T, Qiu F, Xu J (2017) High-specific surface area hierarchical Al2O3 carbon fiber based on a waste paper fiber template: preparation and adsorption for iodide ions. J Wood Chem Technol 37(6):485–492. https://doi.org/10.1080/02773813.2017.1347684

    Article  CAS  Google Scholar 

  52. Li J, Yang X, Bai C, Tian Y, Li B, Zhang S, Yang X, Ding S, Xia C, Tan X, Ma L, Li S (2015) A novel benzimidazole-functionalized 2-D COF material: Synthesis and application as a selective solid-phase extractant for separation of uranium. J Colloid Interface Sci 437:211–218. https://doi.org/10.1016/j.jcis.2014.09.046

    Article  CAS  PubMed  Google Scholar 

  53. Lu Y, Liu H, Gao R, Xiao S, Zhang M, Yin Y, Wang S, Li J, Yang D (2016) Coherent-interface-assembled Ag2O-anchored nanofibrillated cellulose porous aerogels for radioactive iodine capture. ACS Appl Mater Interfaces 8(42):29179–29185. https://doi.org/10.1021/acsami.6b10749

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part of the project titled “The National Key Project of Research and Development Plan” (Grant No. 2016YFC1402504). The authors thank the funding source of this research and the research platform provided by Wuhan University of technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Li.

Ethics declarations

Conflict of interest

The authors declare that there is no any conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, J., Li, Y., Jiang, Y. et al. Silver-doped MIL-101(Cr) for rapid and effective capture of iodide in water environment: exploration on adsorption mechanism. J Radioanal Nucl Chem 328, 1041–1054 (2021). https://doi.org/10.1007/s10967-021-07705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07705-z

Keywords

Navigation