Skip to main content
Log in

Local atomic structure of uranium ions and dissolution behavior of iron phosphate glass hosts to immobilize spent nuclear fuel

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Iron phosphate glasses with melting temperatures of ~ 1300 °C were developed to immobilize spent nuclear fuels. The glasses have densities of ~ 3.4 g/cm3 and glass transition temperatures of ~ 555 °C that are high enough to endure the temperatures in geological repositories. The waste loading of UO2 in the glass was ~ 33.73 wt%. Normalized elemental releases from the product consistency test were well below the regulated limit of 2 g/m2. Most of the U in the glass is in the 4 + state, which is more chemically durable than the 6 + state. UO8 polyhedra in the glass with five oxygens at the distance of 2.25 Å and three at 2.87 Å were formed. U atoms are connected to PO4 tetrahedra that form the phosphate glass network. Chemically-durable crystals (uranium pyrophosphate, UP2O7) were formed during the dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Park BH (2017) Assessment of spent nuclear fuel amounts to be managed based on disposal option in Republic of Korea. Ann Nucl Energy 109:199–207

    Article  CAS  Google Scholar 

  2. Ewing RC (2015) Long-term storage of spent nuclear fuel. Nat Mater 14:252–257

    Article  CAS  Google Scholar 

  3. Lee JY, Cho DK, Choi HJ, Choi JW, Wang LM (2011) Analyses of disposal efficiency based on nuclear spent fuel cooling time and disposal tunnel/pit spacing for the design of a geological repository. Prog Nucl Energy 53(4):361–367

    Article  CAS  Google Scholar 

  4. Kim JS, Kwon SK, Sanchez M, Cho GC (2011) Geological storage of high level nuclear waste. KSCE J Civ Eng 15(4):721–737

    Article  Google Scholar 

  5. Choi HJ, Lee JY, Choi J (2013) Development of geological disposal systems for spent fuels and high-level radioactive wastes in Korea. Nucl Eng Technol 45(1):29–40

    Article  Google Scholar 

  6. Lee HS, Park GI, Kang KH, Hur JM, Kim JG, Ahn DH, Cho YZ, Kim EH (2011) Pyroprocessing technology development at KAERI. Nucl Eng Technol 43(4):317–328

    Article  CAS  Google Scholar 

  7. Park SH, Ahn SK, Chang HL, Han BY, Kim BY, Kim D, Kim HD, Lee C, Oh JM, Seo H, Shin HS, Won BH, Ku JH (2017) Status of development of pyroprocessing safeguards at KAERI. J Nucl Fuel Cycle Waste Technol 15(3):191–197

    Article  Google Scholar 

  8. Forsberg CW, Ferrada JJ Glass material oxidation and dissolution system: converting miscellaneous fissile materials to glass. CONF-960116-8

  9. Forsberg CW, Elam KR, Reich WJ New glass material oxidation and dissolution system facility: Direct conversion of surplus fissile materials, spent nuclear fuel, and other material to high-level-waste glass. Storage and disposition of weapons-usable fissile materials programmatic environmental impact statement data report: predecisional draft. ORNL/MD/LTR--13

  10. Forsberg CW, Beahm EC, Parker GW, Elam KR (1996) Conversion of radioactive and hazardous chemical wastes into borosilicate glass using the glass material oxidation and dissolution system. Waste Manag 16(7):615–623

    Article  CAS  Google Scholar 

  11. Ramsey WG, Bibler NE, Meaker TF Compositions and durabilities of glasses for immobilization of Plutonium and Uranium, WSRC-MS-94-0550

  12. Lee CW, Shin SG, Kye YU, Heo J (2020) Evaluation of thermal stability in deep geological repository and nuclear criticality safety of spent nuclear fuel vitrified in iron phosphate glass. Ann Nucl 136:107055

    Article  CAS  Google Scholar 

  13. Nelson AT, Rittman DR, White JT, Dunwoody JT, Kato M, McClellan KJ (2014) An evaluation of the thermophysical properties of stoichiometric CeO2 in comparison to UO2 and PuO2. J Am Ceram Soc 97(11):3652–3659

    Article  CAS  Google Scholar 

  14. Lopez C, Deschanels X, Bart JM, Boubals JM, Auwer CD, Simoni E (2003) Solubility of actinide surrogates in nuclear glasses. J Nucl Mater 312(1):76–80

    Article  CAS  Google Scholar 

  15. Darab JG, Li H, Vienna JD (1998) X-ray absorption spectroscopic investigation of the environment of cerium in glasses based on complex cerium alkali borosilicate compositions. J Non-Cryt Solids 226(1–2):162–174

    Article  CAS  Google Scholar 

  16. Du J, Kokou L, Rygel JL, Chen Y, Pantano CG, Woodman R, Belcher J (2011) Structure of cerium phosphate glasses: molecular dynamics simulation. J Am Ceram Soc 94(8):2393–2401

    Article  CAS  Google Scholar 

  17. Jollivet P, Auwer CD, Simoni E (2002) Evolution of the uranium local environment during alteration of SON68 glass. J Nucl Mater 301(2–3):142–152

    Article  CAS  Google Scholar 

  18. Hess NJ, Weber WJ, Conradson SD (1998) U and Pu Liii XAFS of Pu-doped glass and ceramic waste forms. J Alloy Compd 271–273:240–243

    Article  Google Scholar 

  19. Pijolat M, Brun C, Valdivieso F, Soustelle M (1997) Reduction of uranium oxide U3O8 to UO2 by hydrogen. Solid State Ionics 101–103(2):931–935

    Article  Google Scholar 

  20. (2008) Standard test methods for determining chemical durability of nuclear, hazardous and mixed waste glasses and multiphase glass ceramics: The Product Consistency Test (PCT), C 1285-02. ASTM International, West Conshohocken, PA

  21. Sheft I, Fried S, Davidson N (1950) Preparation of uranium trioxide. J Am Chem Soc 72:2172–2173

    Article  CAS  Google Scholar 

  22. (2018) Standard practice for measurement of the glass dissolution rate using the single-pass flow-through test method, C1662-17. ASTM International, West Conshohocken, PA

  23. Schreiber HD, Minnix LM, Carpenter BE, Solberg TN (1983) The chemistry of uranium in borosilicate glasses. Phys Chem Glasses 24(6):155–165

    CAS  Google Scholar 

  24. Sturchio NC, Antonio MR, Soderholm L, Sutton SR, Brannon JC (1998) Tetravalent uranium in calcite. Science 281(5379):971–973

    Article  CAS  Google Scholar 

  25. Knapp GS, Veal BW, Lam DJ, Paulikas AP, Pan HK (1984) EXAFS studies of silicate glasses containing uranium. Mater Lett 2(4):253–256

    Article  CAS  Google Scholar 

  26. Tobin JG, Booth CH, Siekhaus W, Shuh DK (2015) EXAFS investigation of UF4. J Vac Sci Technol A 33(3):033001

    Article  Google Scholar 

  27. Bocharov D, Chollet M, Krack M, Bertsch J, Grolimund D, Martin M, Kuzmin A, Purans J, Kotomin E (2017) Analysis of the U L3-edge X-ray absorption spectra in UO2 using molecular dynamics simulations. Prog Nucl Energy 94:187–193

    Article  CAS  Google Scholar 

  28. Wilkerson MP, Hernandez SC, Mullen WT, Nelson AT, Pugmire AL, Scott BL, Sooby ES, Tamasi AL, Wagner GL, Walensky JR (2020) Hydration of α-UO3 following storage under controlled conditions of temperature and relative humidity. Dalton Trans 49:10452–10462

    Article  CAS  Google Scholar 

  29. Yu N, Klepov VV, Neumeier S, Depmeier W, Bosbach D, Suleimanov EV, Alekseev EV (2015) Further insight into uranium and thorium metaphosphate chemistry and the effect of Nd3+ incorporation into uranium(IV) metaphosphate. Eur J Inorg Chem. https://doi.org/10.1002/ejic.201403098

    Article  Google Scholar 

  30. Hellmann R, Cotte S, Cadel E, Malladi S, Karlsson LS, Perez SL, Cabie M, Seyeux A (2015) Nanometre-scale evidence for interfacial dissolution–reprecipitation control of silicate glass corrosion. Nat Mater 14:307–311

    Article  CAS  Google Scholar 

  31. Li L, Strachan DM, Li H, Davis LL, Qian M (2000) Crystallization of gadolinium- and lanthanum-containing phases from sodium alumino-borosilicate glasses. J Non-Cryst Solids 272(1):46–56

    Article  CAS  Google Scholar 

  32. Bunker BC, Arnold GW, Day DE, Bray PJ (1986) The effect of molecular structure on borosilicate glass leaching. J Non-Cryst Solids 87(1–2):226–253

    Article  CAS  Google Scholar 

  33. Goel A, McCloy JS, Pokorny R, Kruger AA (2019) Challenges with vitrification of Hanford High-Level Waste (HLW) to borosilicate glass–An overview. J Non-Cryst Solids: X 4:100033

    Google Scholar 

  34. Pannell JH, Rubino EM Some properties of uranous phosphates. Massachusetts Institute of Technology (MIT), MITG-245.

  35. Kitamura A, Fujiwara K, Doi R, Yoshida Y. Update of JAEA-TDB: additional selection of thermodynamic data for solid and gaseous phases on nickel, selenium, zirconium, technetium, thorium, uranium, neptunium plutonium and americium, update of thermodynamic data on iodine, and some modifications. Japan Atomic Energy Agency (JAEA), JAEA-Data/Code 2012-006

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019M2A7A1001811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Heo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.W., Kwon, Y.K. & Heo, J. Local atomic structure of uranium ions and dissolution behavior of iron phosphate glass hosts to immobilize spent nuclear fuel. J Radioanal Nucl Chem 328, 701–706 (2021). https://doi.org/10.1007/s10967-021-07687-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07687-y

Keywords

Navigation