Skip to main content
Log in

Optimization of Sr-90 precipitation in nitric acid using design of experiments for radioactive waste characterization method

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

90Sr radiochemical method using nitric acid for Sr and Ca separation was optimized using design of experiments methodology. Nitric acid concentration and total volume of solution were determined as influencing factors applying Plackett–Burman design. These parameters were then optimized using Box–Behnken experimental design. An optimal nitric acid concentration of 63% and a total solution volume of 26 mL were found to achieve a Sr recovery of 93% with only 5% of Ca for a single precipitation. The developed procedure was applied on real radwaste samples: effluent, sludge and concrete. By comparison of the recovery and the 90Sr activity measurement with the results of the in-house standard method based on fuming nitric acid, the optimized method with concentrated nitric acid was validated. The fuming nitric acid can now be eliminated for 90Sr radioactive waste characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. International Atomic Energy Agency (2020) PRIS—power reactor information system. https://pris.iaea.org/PRIS/home.aspx. Accessed 10 Nov 2020

  2. Roussel-Debet S, Beaugelin K (2005) Fiche radionucléide: strontium-90 et environnement

  3. AFNOR (2002) Standard NF M60-316—nuclear energy—nuclear fuel technology—waste—strontium-90 assay in liquid or solid waste after a preliminary chemical separation

  4. Turkington G, Gamage KAA, Graham J (2018) Beta detection of strontium-90 and the potential for direct in situ beta detection for nuclear decommissioning applications. Nucl Inst Methods Phys Res A 911:56–65

    Article  Google Scholar 

  5. Petrow HG (1965) Rapid determination of strontium-90 in bone via solvent extraction of yttrium-90. Anal Chem 37:584–586. https://doi.org/10.1021/ac60223a037

    Article  CAS  PubMed  Google Scholar 

  6. Borcherding J, Nies H (1986) An improved method for the determination of 90Sr in large samples of seawater. J Radioanal Nucl Chem 98:127–131. https://doi.org/10.1007/BF02060440

    Article  CAS  Google Scholar 

  7. ISO (2016) 13160—water quality—strontium-90 and strontium-89—test methods using liquid scintillation counting or proportional counting

  8. Goldin AS, Velten RJ, Frishkorn GW (1959) Determination of radioactive strontium. Anal Chem 31:1490–1492. https://doi.org/10.1021/ac60153a023

    Article  CAS  Google Scholar 

  9. Willard HH, Goodspeed EW (1936) Separation of strontium, barium, and lead from calcium and other metals—by precipitation as nitrates. Ind Eng Chem Anal Ed 8:414–418. https://doi.org/10.1021/ac50104a003

    Article  CAS  Google Scholar 

  10. Gillard-Baruh JHC (1973) Méthode rapide de détermination des strontium-90 et strontium-89 dans le lait. Radiochim Acta 20:73–80

    Article  CAS  Google Scholar 

  11. Johns FB (1975) Handbook of radiochemical analytical methods. US Environmental Protection Agency, Washington, DC

  12. Krieger HL, Whittaker EL (1980) Prescribed procedures for measurement of radioactivity in drinking water. U.S. Environmental Protection Agency

  13. Wilken R-D, Oiehl R (1987) Strontium-90 in environmental samples from northern Germany before and after the Chernobyl accident. Radiochim Acta. https://doi.org/10.1524/ract.1987.41.4.157

    Article  Google Scholar 

  14. International Atomic Energy Agency (1989) Measurement of radionuclides in food and the environment: a guidebook. Vienna

  15. Wiechen A, Tait D (1992) Procedure for determining the strontium-90 content of milk (nitric acid method). Fed Coord Off Soil Veg Anim Feed Food Veg Anim Orig

  16. Florou H, Savidou A, Chaloulou C (1996) Strontium-90 activity in monthly milk samples from Greece. J Dairy Sci 79:1679–1682. https://doi.org/10.3168/jds.S0022-0302(96)76532-3

    Article  CAS  PubMed  Google Scholar 

  17. Chieco NA (1997) The procedures manual of the environmental measurements laboratory

  18. Brun S, Kergadallan Y, Boursier B et al (2003) Methodology for determination of radiostrontium in milk: a review. Le Lait 83:1–15. https://doi.org/10.1051/lait:2002046

    Article  CAS  Google Scholar 

  19. Sajeniouk AD (2005) Routine radiochemical method for the determination of 90Sr, 238Pu, 239 + 240Pu, 241Am and 244Cm in environmental samples. J Radioanal Nucl Chem 264:337–342. https://doi.org/10.1007/s10967-005-0718-5

    Article  CAS  Google Scholar 

  20. Shao Y, Yang G, Tazoe H et al (2018) A review of measurement methodologies and their applications to environmental 90Sr. J Environ Radioact 192:321–333. https://doi.org/10.1016/j.jenvrad.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  21. Krieger HL, Gold S (1973) Procedure for radiochemical analysis of nuclear reactor aqueous solutions. U.S. Environmental Protection Agency, Cincinnati

    Google Scholar 

  22. Dietz ML, Yaeger J, Sajdak LR, Jensen MP (2005) Characterization of an improved extraction chromatographic material for the separation and preconcentration of strontium from acidic media. Sep Sci Technol 40:349–366. https://doi.org/10.1081/SS-200042247

    Article  CAS  Google Scholar 

  23. Jakopič R, Benedik L (2005) Tracer studies on Sr Resin and determination of 90Sr in environmental samples. Acta Chim Slov 52:297–302

    Google Scholar 

  24. Triskem (2015) Sr-Resin product sheet. https://www.triskem-international.com. Accessed 10 Nov 2020

  25. Goutelard F, Nazard R, Bocquet C et al (2000) Improvement in measurements at very low levels in environmental samples. Appl Radiat Isot 53:145–151. https://doi.org/10.1016/S0969-8043(00)00126-3

    Article  CAS  PubMed  Google Scholar 

  26. Hou X (2019) Radioanalysis of ultra-low level radionuclides for environmental tracer studies and decommissioning of nuclear facilities. J Radioanal Nucl Chem 322:1217–1245. https://doi.org/10.1007/s10967-019-06908-9

    Article  CAS  Google Scholar 

  27. PubChem (2020) Nitric acid. https://pubchem.ncbi.nlm.nih.gov/compound/944. Accessed 10 Nov 2020

  28. Merck (2020) Acid Nitric - Merck. https://www.sigmaaldrich.com/catalog/

  29. Sunderman DN, Townley CW (1960) The radiochemistry of barium, calcium and strontium. Tech Rep NSA-14-014790: https://doi.org/10.2172/4140481

    Article  Google Scholar 

  30. Sunderman DN, Meinke WW (1957) Evaluation of radiochemical separation procedures. Anal Chem 29:1578–1589. https://doi.org/10.1021/ac60131a005

    Article  CAS  Google Scholar 

  31. Bojanowski R, Knapinska-Skiba L (1990) Determination of low-level 90Sr in environmental materials: a novel approach to the classical method. J Radioanal Nucl Chem 138:207–218. https://doi.org/10.1007/BF02039846

    Article  CAS  Google Scholar 

  32. AFNOR (2018) NF T90-210 - Water quality - Protocol for the intial method performance assesment in a laboratory

  33. ISO (2013) 11352 - Water quality - Estimation of measurement uncertainty based on validation and quality control data

  34. Nemrod W (2020) https://www.nemrodw.com. Accessed 1 Dec 2020

  35. Gautier C, Colin C, Garcia C (2016) A comparative study using liquid scintillation counting to determine 63Ni in low and intermediate level radioactive waste. J Radioanal Nucl Chem 308:261–270. https://doi.org/10.1007/s10967-015-4301-4

    Article  CAS  Google Scholar 

  36. Sastry SV, Khan MA (1998) Aqueous based polymeric dispersion: Plackett–Burman design for screening of formulation variables of atenolol gastrointestinal therapeutic system. Pharm Acta Helv 73:105–112. https://doi.org/10.1016/S0031-6865(97)00052-6

    Article  CAS  PubMed  Google Scholar 

  37. Ferreira SLC, Bruns RE, Ferreira HS et al (2007) Box–Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186

    Article  CAS  Google Scholar 

  38. Chen X-C, Bai J-X, Cao J-M et al (2009) Medium optimization for the production of cyclic adenosine 3′,5′-monophosphate by microbacterium sp. no. 205 using response surface methodology. Bioresour Technol 100:919–924. https://doi.org/10.1016/j.biortech.2008.07.062

    Article  CAS  PubMed  Google Scholar 

  39. Gao H, Liu M, Liu J et al (2009) Medium optimization for the production of avermectin B1a by streptomyces avermitilis 14-12A using response surface methodology. Bioresour Technol 100:4012–4016. https://doi.org/10.1016/j.biortech.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  40. Petty MD (2012) Calculating and using confidence Intervals for model validation. University of Alabama, Huntsville

    Google Scholar 

  41. Kumar L, Sreenivasa Reddy M, Managuli RS, Girish Pai K (2015) Full factorial design for optimization, development and validation of HPLC method to determine valsartan in nanoparticles. Saudi Pharm J 23:549–555. https://doi.org/10.1016/j.jsps.2015.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vajda N, Kim C-K (2010) Determination of radiostrontium isotopes: a review of analytical methodology. Appl Radiat Isot 68:2306–2326. https://doi.org/10.1016/j.apradiso.2010.05.013

    Article  CAS  PubMed  Google Scholar 

  43. Weiss HV, Shipman WH (1957) Separation of strontium from calcium with potassium rhodizonate. Application to radiochemistry. Anal Chem 29:1764–1766. https://doi.org/10.1021/ac60132a027

    Article  CAS  Google Scholar 

  44. Popov L, Hou X, Nielsen SP, Yu Y (2006) Determination of radiostrontium in environmental samples using sodium hydroxide for separation of strontium from calcium. J Radioanal Nucl Chem 269:161–173. https://doi.org/10.1007/s10967-006-0246-y

    Article  CAS  Google Scholar 

  45. Lehto J, Hou X (2011) Chemistry and analysis of radionuclides: laboratory techniques and methodology. Wiley, New York

  46. Qiao J, Salminen-Paatero S, Rondahl SH et al (2017) Inter-laboratory exercise with an aim to compare methods for 90Sr and 239,240Pu determination in environmental soil samples. J Radioanal Nucl Chem 314:813–826. https://doi.org/10.1007/s10967-017-5385-9

    Article  CAS  Google Scholar 

  47. Rondahl SH, Tovedal A, Björnham O, Ramebäck H (2017) Time optimization of 90Sr determinations: sequential measurement of multiple samples during decay of 90Y. J Radioanal Nucl Chem 311:1143–1148. https://doi.org/10.1007/s10967-016-5062-4

    Article  CAS  PubMed  Google Scholar 

  48. AFNOR (2010) NF EN ISO/IEC 17043—Évaluation de la conformité—Exigences générales concernant les essais d’aptitude

  49. Butler F, Du De Nemours P, Aiken EISC (1963) Separation of calcium and strontium by liquid ion Determination of total radiostrontium in milk. Anal Chem US 35:2069–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Baudat.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baudat, E., Gautier, C., Fichet, P. et al. Optimization of Sr-90 precipitation in nitric acid using design of experiments for radioactive waste characterization method. J Radioanal Nucl Chem 328, 637–650 (2021). https://doi.org/10.1007/s10967-021-07680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07680-5

Keywords

Navigation