Skip to main content
Log in

Mn doping on Mössbauer spectroscopy of maricite-NaFePO4 as cathode material

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Transition metal ion substitution in sodium phosphate is effective in enhancing the performance of a cathode material. The maricite-NaFe1−xMnxPO4 (x = 0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized using solid-state procedures. The lattice constants and bond lengths between Fe–O ions of NaFe1−xMnxPO4 increased by increasing the Mn substitutions. The temperature dependence of the magnetization for NaFe1−xMnxPO4 decreased with an increase in the Mn substitutions, indicating a weakened antiferromagnetic interaction. The Mössbauer spectra exhibited asymmetrical line below the Néel temperature (TN) and were fitted with eight Lorentzian lines, owing to a strong crystalline field in the distorted Fe(Mn)O6 octahedral site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  2. Fang Y, Xiao L, Qian J, Ai X, Yang H, Cao Y (2014) Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. Nano Lett 14:3539–3543

    Article  CAS  Google Scholar 

  3. Wang LP, Yu L, Wang X, Srinivasana M, Xu ZJ (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3:9353–9378

    Article  CAS  Google Scholar 

  4. Rahman MM, Sultana I, Mateti S, Liu J, Sharma N, Chen Y (2017) Maricite NaFePO4/C/graphene: a novel hybrid cathode for sodium-ion batteries. J Mater Chem A 5:16616–16621

    Article  CAS  Google Scholar 

  5. Liu Y, Zhang N, Wang F, Liu X, Jiao L, Fan L (2018) Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries. Adv Funct Mater 28:1801917

    Article  Google Scholar 

  6. Sevinc S, Burak T, Ata A, Morcrette M, Perrot H (2019) In-situ tracking of NaFePO4 formation in aqueous electrolytes and its electrochemical performances in Na-ion/polysulfide batteries. J Power Sources 412:55–62

    Article  CAS  Google Scholar 

  7. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  CAS  Google Scholar 

  8. Ali G, Lee J, Susanto D, Cho S, Nam BW, Nam K, Chung KY (2016) Polythiophene-wrapped olivine NaFePO4 as a cathode for Na-ion batteries. ACS Appl Mater Interfaces 8:15422–15429

    Article  CAS  Google Scholar 

  9. Boyadzhieva T, Koleva V, Stoyanova R (2017) Crystal chemistry of Mg substitution in NaMnPO4 olivine: concentration limit and cation distribution. Phys Chem Chem Phys 19:12730–12739

    Article  CAS  Google Scholar 

  10. Yamada A, Chung S (2001) Crystal chemistry of the olivine-type Li(MnyFe1y)PO4 and (MnyFe1y)PO4 as possible 4V cathode materials for lithium batteries. J Electrochem Soc 148:A960–A967

    Article  CAS  Google Scholar 

  11. Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97:430–432

    Article  Google Scholar 

  12. Bramnik NN, Ehrenberg H (2008) Precursor-based synthesis and electrochemical performance of LiMnPO4. J Alloys Compd 464:259–264

    Article  CAS  Google Scholar 

  13. Kobayashi G (2009) Shift of redox potential and kinetics in Lix(MnyFe1−y)PO4. J Power Sources 189:397–401

    Article  CAS  Google Scholar 

  14. Kim SW, Kim J, Gwon H, Kang K (2009) Phase stability study of Li1−xMnPO4 (0 ≤ x ≤ 1) cathode for Li rechargeable battery. J Electrochem Soc 156:A635–A638

    Article  CAS  Google Scholar 

  15. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714

    Article  CAS  Google Scholar 

  16. Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113:6552–6591

    Article  CAS  Google Scholar 

  17. Lee IK, Kim SJ, Kouh T, Kim CS (2013) Mössbauer analysis of silicate Li2FeSiO4 and delithiated Li2−xFeSiO4 (x = 0.66) compounds. J Appl Phys 113:17E306

    Article  Google Scholar 

  18. Ravnsbæk DB, Xiang K, Xing W, Borkiewicz OJ, Wiaderek KM, Gionet P, Chapman KW, Chupas PJ, Chiang YM (2014) Extended solid solutions and coherent transformations in nanoscale olivine cathodes. Nano Lett 14:1484–1491

    Article  Google Scholar 

  19. Snydacker DH, Wolverton C (2016) Transition-metal mixing and redox potentials in Lix(M1–yMy)PO4 (M, M′ = Mn, Fe, Ni) olivine materials from first-principles calculations. J Phys Chem C 120:5932–5939

    Article  CAS  Google Scholar 

  20. Zheng M, Bai Z, He Y, Wu S, Yang Y, Zhu Z (2020) Anionic redox processes in maricite- and triphylite-NaFePO4 of sodium-ion batteries. ACS Omega 5:5192–5201

    Article  CAS  Google Scholar 

  21. Avdeev M (2013) Structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries. Inorg Chem 52:8685–8693

    Article  CAS  Google Scholar 

  22. Seo JY, Choi H, Kim CS (2018) Crystal structure and magnetic properties of sodium-iron phosphates NaFe0.9Mn0.1PO4 cathode material. J Korean Phys Soc 73:1863–1866

    Article  CAS  Google Scholar 

  23. Kim HH, Yu IH, Kim HS, Koo HJ, Whangbo MH (2015) On why the two polymorphs of NaFePO4 exhibit widely different magnetic structures: density functional analysis. Inorg Chem 54:4966–4971

    Article  CAS  Google Scholar 

  24. Cullity BD, Graham CD (2009) Introduction to magnetic materials. Wiley, Hoboken

    Google Scholar 

  25. Ingalls R (1964) Electric-field gradient tensor in ferrous compounds. Phys Rev 133:A787–A795

    Article  Google Scholar 

  26. Kim CS, Shim IB, Ha MY, Park JY (1993) Magnetic properties of the monoclinic FeRh2Se4. J Appl Phys 73:5707–5709

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Mid-Career Researcher Program, through the National Research Foundation of Korea (NRF), with a grant funded by the Ministry of Education, Science and Technology (MEST) (NRF-2017R1A2B2012241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul Sung Kim.

Ethics declarations

Conflict of interest

All the authors do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J.Y., Choi, H. & Kim, C.S. Mn doping on Mössbauer spectroscopy of maricite-NaFePO4 as cathode material. J Radioanal Nucl Chem 330, 427–432 (2021). https://doi.org/10.1007/s10967-021-07676-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07676-1

Keywords

Navigation