Skip to main content
Log in

Amide and phosphate groups modified bifunctional luffa fiber for highly efficient removal of U(VI) from real uranium wastewater

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the natural luffa fiber was easily modified by chemical method with amide groups and phosphoric acid (LF-A2-M1/P). SEM, XRD, FTIR and XPS were used to characterize the morphology, structure, and property of the fiber. The maximum adsorption capacity of LF-A2-M1/P towards U(VI) is 353.85 mg·g−1 (pH = 6). The thermodynamic parameters demonstrate that the adsorption of functional fibers to U(VI) is a spontaneous process. It is worth noting that LF-A2-M1/P has excellent removal amount for U(VI) in the real uranium wastewater. Our study provides some new insights into the purification of uranium-containing wastewater by the modified natural fiber.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brown S, Yue Y, Kuo LJ, Mehio N, Li M, Gill G, Tsouris C, Mayes RT, Saito T, Dai S (2016) Uranium adsorbent fibers prepared by atom-transfer radical polymerization (ATRP) from poly(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. Ind Eng Chem Res 55:4139–4148

    Article  CAS  Google Scholar 

  2. Ma S, Huang L, Ma L, Shim Y, Islam SM, Wang P, Zhao LD, Wang S, Sun G, Yang X (2015) Efficient uranium capture by polysulfide/layered double hydroxide composites. J Am Chem Soc 137:3670–3677

    Article  CAS  PubMed  Google Scholar 

  3. Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134:16441–16446

    Article  CAS  PubMed  Google Scholar 

  4. Gunathilake C, Gorka J, Dai S, Jaroniec M (2015) Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J Mater Chem A 3:11650–11659

    Article  CAS  Google Scholar 

  5. Yang DJ, Zheng ZF, Zhu HY, Liu HW, Gao XP (2008) Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv Mater 20:2777–2781

    Article  CAS  PubMed  Google Scholar 

  6. Comarmond MJ, Payne TE, Harrison JJ, Thiruvoth S, Wong HK, Aughterson RD, Lumpkin GR, MuLler K, Foerstendorf H (2011) Uranium sorption on various forms of titanium dioxide – influence of surface area. Surf. Charge Impur. Environ Sci Technol 45:5536–5542

    CAS  Google Scholar 

  7. Zhou L, Bosscher M, Zhang CS, Zhang L, Zhang W, Li CJ, Liu JZ, Jensen MP, Lai LH, He C (2014) A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat chem 6:236–241

    Article  CAS  PubMed  Google Scholar 

  8. Das S, Brown S, Mayes RT, Janke CJ, Tsouris C, Kuo LJ, Gill G, Dai S (2016) Novel poly (imide dioxime) sorbents: development and testing for enhanced extraction of uranium from natural seawater. Chem Eng J 298:125–135

    Article  CAS  Google Scholar 

  9. Guo XJ, Chen RR, Liu Q, Liu JY, Zhang HS, Yu J, Li RM, Zhang ML, Wang J (2018) Superhydrophilic phosphate and amide functionalized magnetic adsorbent: a new combination of anti-biofouling and uranium extraction from seawater. Environ Sci -Nano 5:2346–2356

    Article  CAS  Google Scholar 

  10. Li Y, Wang L, Li B, Zhang MC, Wen R, Guo XH, Li X, Zhang J, Li SJ, Ma LJ (2016) Pore-free matrix with cooperative chelating of hyperbranched ligands for high-performance separation of uranium. Acs Appl Mater Inter 8:28853–28861

    Article  CAS  Google Scholar 

  11. Luo W, Xiao G, Tian F, Richardson JJ, Wang YP, Zhou JF, Guo JL, Liao XP, Shi B (2019) Engineering robust metal–phenolic network membranes for uranium extraction from seawater. Energ Environ Sci 12:607–614

    Article  CAS  Google Scholar 

  12. Xu MY, Han XL, Wang T, Li SH, Hua DB (2018) Conjugated microporous polymers bearing phosphonate ligands as an efficient sorbent for potential uranium extraction from high-level liquid wastes. J Mater Chem A 6:13894–13900

    Article  CAS  Google Scholar 

  13. Barber PS, Kelley SP, Griggs CS, Wallace S, Rogers RD (2014) Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan. Green Chem 16:1828–1836

    Article  CAS  Google Scholar 

  14. Ogden MD, Moon EM, Wilson A, Pepper SE (2017) Application of chelating weak base resin Dowex M4195 to the recovery of uranium from mixed sulfate/chloride media. Chem Eng J 317:80–89

    Article  CAS  Google Scholar 

  15. Carboni M, Abney CW, Liu S, Lin W (2013) Highly porous and stable metal–organic frameworks for uranium extraction. Chem sci 4:2396–2402

    Article  CAS  Google Scholar 

  16. Bai ZQ, Yuan LY, Zhu L, Liu ZR, Chu SQ, Zheng LR, Zhang J, Chai ZF, Shi WQ (2015) Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J Mater Chem A 3:525–534

    Article  CAS  Google Scholar 

  17. Zhao GX, Wen T, Yang X, Yang SB, Liao JL, Hu J, Shao DD, Wang XK (2012) Preconcentration of U(vi) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton T 41:6182–6180

    Article  CAS  Google Scholar 

  18. Shao DD, Hou GS, Li JX, Tao W, Ren XM, Wang XK (2014) PANI/GO as a super adsorbent for the selective adsorption of uranium (VI). Chem Eng J 255:604–612

    Article  CAS  Google Scholar 

  19. Wang FH, Li HP, Liu Q, Li ZS, Li RM, Zhang HS, Liu LH, Emelchenko GA, Wang J (2016) A graphene oxide/amidoxime hydrogel for enhanced uranium capture. Sci Rep-Uk 6:19367

    Article  CAS  Google Scholar 

  20. Chen X, Wan CX, Yu R, Meng LP, Wang DL, Duan T, Li LB (2020) Fabrication of amidoximated polyacrylonitrile nanofibrous membrane by simultaneously biaxial stretching for uranium extraction from seawater. Desalination 486:114447

    Article  CAS  Google Scholar 

  21. Yarlagadda S, Gude VG, Camacho LM, Pinappu S, Deng SG (2011) Potable water recovery from As, U, and F contaminated ground waters by direct contact membrane distillation process. J Hazard Mater 192:1388–1394

    Article  CAS  PubMed  Google Scholar 

  22. Tuzen M, Saleh TA, Sarı A, Naeemullah, (2020) Interfacial polymerization of trimesoyl chloride with melamine and palygorskite for efficient uranium ions ultra-removal. Chem Eng Res Des 159:353–361

    Article  CAS  Google Scholar 

  23. Bağda E, Tuzen M, Sarı A (2017) Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae). J Environ Radioactiv 176:7–14

    Article  CAS  Google Scholar 

  24. Saleh TA, Naeemullah MT, Sar A (2017) Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem Eng Res Des 117:218–227

    Article  CAS  Google Scholar 

  25. Hu XW, Wang Y, Yang JO, Li Y, Wu P, Zhang HJ, Yuan DZ, Liu Y, Wu ZY, Liu ZR (2020) Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions. Front Chem Sci Eng 14:1029–1038

    Article  CAS  Google Scholar 

  26. Xiang SH, Cheng WC, Nie XQ, Ding CC, Yi FC, Asiri AM, Marwani HM (2018) Zero-valent iron-aluminum for the fast and effective U(VI) removal. J Taiwan Inst Chem E 85:186–192

    Article  CAS  Google Scholar 

  27. Sarafraz H, Minuchehr A, Alahyarizadeh G, Rahimi Z (2017) Sci Rep-Uk 7:11675

    Article  CAS  Google Scholar 

  28. Li HL, Ye L, Zhou YZ, Li BL, Liu DB, Liao HY (2019) Efficient removal of uranium using a melamine/trimesic acid-modified hydrothermal carbon-based supramolecular organic framework. J Colloid Interf Sci 544:14–24

    Article  CAS  Google Scholar 

  29. Wang CH, Zheng T, Luo R, Liu C, Zhang M, Li JS, Sun XY, Shen JY, Han WQ, Wang LJ (2018) In situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(VI) removal. Acs Appl Mater Inter 10:24164–24171

    Article  CAS  Google Scholar 

  30. Tyupa DV, Kalenov SV, Skladnev DA, Khokhlachev NS, Baurina MM, Kuznetsov AY (2015) Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures. Bioproc Biosyst Eng 38:125–135

    Article  CAS  Google Scholar 

  31. Li-juan P, Zhang Lin-juan Hu, Jiang-tao L-L (2017) High-performance functionalized polyethylene fiber for the capture of trace uranium in water. J Radioanal Nucl Ch 314:2393–2403

    Article  CAS  Google Scholar 

  32. Li R, Li Y, Zhang MJ, Xing Z, Ma HJ, Wu GZ (2018) Phosphate-based ultrahigh molecular weight polyethylene fibers for efficient removal of uranium from carbonate solution containing fluoride ions. Molecules 23(6):1245

    Article  PubMed Central  CAS  Google Scholar 

  33. Liu Z, Li BR, Pan YX, Shi K, Wang WC, Peng C (2017) Adsorption behavior of hydrophilic luffa sponges to heavy metal ions in water system. Chem J Chinese U 38:123–130

    Google Scholar 

  34. Luo WJ, Luo TT, Mu JL, Cai Y, Wei J, Li HF (2019) Enrichment and recovery of Cr (VI) from aqueous solution via a monolithic loofah sponge modified by tannins and arginine. Springer 27:618–631

    CAS  Google Scholar 

  35. Abderrahim O, Didi MA, Villemin D (2009) A new sorbent for uranium extraction: polyethyleniminephenylphosphonamidic acid. J Radioanal Nucl Ch 279:237–244

    Article  CAS  Google Scholar 

  36. Mamadou SD, Wondwossen A, James HJ, William AG (2008) Dendritic chelating agents. 2. U(VI) binding to poly(amidoamine) and poly(propyleneimine) dendrimers in aqueous solutions. Environ Sci Technol 42:1572–1579

    Article  CAS  Google Scholar 

  37. Bharti S, Mishra S, Sen G (2013) Ceric ion initiated synthesis of polyacrylamide grafted oatmeal: its application as flocculant for wastewater treatment. Carbohydr Polym 93:528–536

    Article  CAS  PubMed  Google Scholar 

  38. Hong L, Ying W, Q. Ning QD, (2012) The pre-treatment practice of luffa fiber. Shanghai Textile Technol 040:23–25

    Google Scholar 

  39. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Mag 15:21–29

    Article  CAS  Google Scholar 

  40. Park CH, Yun KK, Im SS (2004) Biodegradability of cellulose fabrics. J Appl Polym Sci 94:248–253

    Article  CAS  Google Scholar 

  41. Seki Y, Sever K, Erden S, Sarikanat M, Neser G, Ozes C (2012) Characterization of Luffa cylindrica fibers and the effect of water aging on the mechanical properties of its composite with polyester. J Appl Polym Sci 123:2330–2337

    Article  CAS  Google Scholar 

  42. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A Appl Sci 36:0–1118

  43. Liu Z, Pan YX, Shi K, Wang WC, Peng C, Li W, Sha D, Wang Z, Ji XL (2016) Preparation of hydrophilic luffa sponges and their water absorption performance. Carbohydr Polym 147:178–187

    Article  CAS  PubMed  Google Scholar 

  44. Wang YQ, Nie XQ, Cheng WC, Dong FQ, Zhang YY, Ding CC, Liu MX, Asiri AM, Marwani HM (2019) A synergistic biosorption and biomineralization strategy for Kocuria sp. to immobilizing U(VI) from aqueous solution. J Mol Liq 275:215–220

    Article  CAS  Google Scholar 

  45. Zhang N, Yuan LY, Guo WL, Luo SZ, Chai ZF, Shi WQ (2017) Extending the use of highly porous and functionalized MOFs to Th(IV) capture. ACS Appl Mater Inter 9:1–22

    CAS  Google Scholar 

  46. Anirudhan TS, Rijith S (2012) Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(VI) from aqueous media. J Environ Radioactiv 106:8–19

    Article  CAS  Google Scholar 

  47. Hang W, Pan ZZ, Giammar D, Li L (2018) Enhanced uranium immobilization by phosphate amendment under variable geochemical and flow conditions: insights from reactive transport modeling. Environ Technol 52:5841–5850

    Article  CAS  Google Scholar 

  48. Su SZ, Chen RR, Liu Q, Liu JY, Zhang HS, Li RM, Zhang ML, Liu PL, Wang J (2018) High efficiency extraction of U(VI) from seawater by incorporation of polyethyleneimine, polyacrylic acid hydrogel and Luffa cylindrical fibers. Chem Eng J 345:526–535

    Article  CAS  Google Scholar 

  49. Donia AM, Atia AA, El-Boraey H, Mabrouk DH (2006) Uptake studies of copper(II) on glycidyl methacrylate chelating resin containing Fe2O3 particles. Sep Purif Technol 49:64–70

    Article  CAS  Google Scholar 

  50. Pang LJ, Zhang LJ, Hu JT, Liang YL, Zhang MJ, Wu GZ (2017) High-performance functionalized polyethylene fiber for the capture of trace uranium in water. J Radioanal Nucl Ch 314:2393–2403

    Article  CAS  Google Scholar 

  51. Xie CY, Jing SP, Wang Y, Lin X, Bao HL, Guan CZ, Jin C, Wang JQ (2017) Adsorption of uranium (VI) onto amidoxime-functionalized ultra-high molecular weight polyethylene fibers from aqueous solution. Nucl Sci Tech 28:94–102

    Article  Google Scholar 

  52. Neti VS, Das S, Brown S, Janke C, Kuo LJ, Gill GA, Dai S, Mayes RT (2017) Efficient functionalization of polyethylene fibers for the uranium extraction from seawater through atom transfer radical polymerization. Ind Eng Chem Res 56:10826–10832

    Article  CAS  Google Scholar 

  53. Lu X, Zhang DX, Reda AT, Liu C, Yang Z, Guo SS, Xiao ST, Ouyang Y (2017) Synthesis of amidoxime-grafted activated carbon fibers for efficient recovery of uranium (VI) from aqueous solution. Ind Eng Chem Res 56:11936–11947

    Article  CAS  Google Scholar 

  54. Cheng YX, He P, Dong FQ, Nie XQ, Ding CC, Wang S, Zhang Y, Liu HH, Zhou SP (2019) Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water. Chem Eng J 367:198–207

    Article  CAS  Google Scholar 

  55. Liu X, Li JX, Wang XX, Chen CL, Wang XK (2015) High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution. J Nucl Mater 466:56–64

    Article  CAS  Google Scholar 

  56. Ma SL, Huang L, Ma LJ, Shim Y, Islam SM, Wang PL, Zhao LD, Wang SC, Sun GB, Yang XJ, Kanatzidis MG (2015) Efficient uranium capture by polysulfide/layered double hydroxide composites. J Am Chem Soc 137:3670–3677

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (41877323, 41703118, 21707110), Sichuan Science and Technology Program (2019YFG0321), Postgraduate Innovation Fund Project by Southwest University of Science and Technology(19ycx001) and China Postdoctoral Science Foundation (2017M612991 and 2018T110994).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqin Nie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, X., Jiang, Y., Dong, F. et al. Amide and phosphate groups modified bifunctional luffa fiber for highly efficient removal of U(VI) from real uranium wastewater. J Radioanal Nucl Chem 328, 591–604 (2021). https://doi.org/10.1007/s10967-021-07670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07670-7

Keywords

Navigation