Skip to main content
Log in

Comparison of the sorption behavior of 99Mo by Ti-, Si-, Ti-Si-xerogels and commercial sorbents

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Single and binary titanium and silicon xerogels were prepared to evaluate and compare their sorption performance with commercial sorbents (Al2O3 and TiO2) used for the 99Mo/99mTc separation, under neutral pH and room temperature conditions. Molybdenum sorption capacities were determined by batch equilibrium systems using Mo(VI) solutions labelled with 99Mo radiotracer. Ti-xerogel showed the highest 99Mo distribution coefficient and sorption capacity, while Si-xerogel exerted null affinity. Binary xerogels and reference sorbents showed similar capacities. Additionally, Ti-xerogel, after a heating process, drastically decreased its sorption capacity. Finally, a molybdenum sorption mechanism was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rathmann SM, Ahmad Z, Slikboer S et al (2019) The Radiopharmaceutical Chemistry of Technetium-99m. Radiopharmaceutical Chemistry. Springer International Publishing, Cham, pp 311–333

    Chapter  Google Scholar 

  2. Osso JA, Catanoso MF, Barrio G et al (2012) Technetium-99m New Production and Processing Strategies to Provide Adequate Levels for SPECT Imaging. Curr Radiopharm 5:178–186. https://doi.org/10.2174/1874471011205030178

    Article  CAS  PubMed  Google Scholar 

  3. IAEA (2013) Non-HEU Production Technologies for Molybdenum-99 and Technetium-99m. IAEA, Vienna

    Google Scholar 

  4. Ruth TJ (2020) The Shortage of Technetium-99m and Possible Solutions. Annu Rev Nucl Part Sci 70:77–94. https://doi.org/10.1146/annurev-nucl-032020-021829

    Article  CAS  Google Scholar 

  5. Hasan S, Prelas MA (2020) Molybdenum-99 production pathways and the sorbents for 99Mo/99mTc generator systems using (n, γ) 99Mo: a review. SN Appl Sci 2:1782. https://doi.org/10.1007/s42452-020-03524-1

    Article  CAS  Google Scholar 

  6. Aydia MI, Hiekal AS, El-Azony KM et al (2020) Preparation and characterization of poly nano-cerium chloride for 99Mo production based on neutron activation reactions. Appl Radiat Isot 163:109211. https://doi.org/10.1016/j.apradiso.2020.109211

    Article  CAS  PubMed  Google Scholar 

  7. Dash A, Knapp FF, Pillai MRA (2013) 99Mo/99mTc separation: An assessment of technology options. Nucl Med Biol 40:167–176. https://doi.org/10.1016/j.nucmedbio.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  8. Bagheri S, Mohd Hir ZA, Yousefi AT, Abdul Hamid SB (2015) Progress on mesoporous titanium dioxide: Synthesis, modification and applications. Microporous Mesoporous Mater 218:206–222. https://doi.org/10.1016/j.micromeso.2015.05.028

    Article  CAS  Google Scholar 

  9. Paris J, Dierickx T, Vanwolleghem P et al (2018) US Patent No 2018/0233243 A1 Radioisotope generator having a stationary phase comprising titanium oxide. U.S. Patent and Trademark Office, Washington, DC

  10. Mushtaq A, Mansoor MS, Karim HMA, Khan MA (1991) Hydrated titanium dioxide as an adsorbent for99Mo−99mTc generator. J Radioanal Nucl Chem Artic 147:257–261. https://doi.org/10.1007/BF02040373

    Article  CAS  Google Scholar 

  11. Qazi QM, Mushtaq A (2011) Preparation and evaluation of hydrous titanium oxide as a high affinity adsorbent for molybdenum (99 Mo) and its potential for use in 99m Tc generators. Radiochim Acta 99:231–235. https://doi.org/10.1524/ract.2011.1817

    Article  CAS  Google Scholar 

  12. Chakravarty R, Shukla R, Gandhi S et al (2008) Polymer embedded nanocrystalline titania sorbent for 99Mo- 99mTc generator. J Nanosci Nanotechnol 8:4447–4452. https://doi.org/10.1166/jnn.2008.280

    Article  CAS  PubMed  Google Scholar 

  13. Hatsukawa BY, Nagai Y, Kin T et al (2011) Isotope production for medical usage using fast neutron reactions. Isot Prod Med usage using fast neutron React 1:327–329. https://doi.org/10.1524/rcpr.2011.0057

    Article  Google Scholar 

  14. Owoeye SS, Jegede FI, Borisade SG (2020) Preparation and characterization of nano-sized silica xerogel particles using sodium silicate solution extracted from waste container glasses. Mater Chem Phys 248:122915. https://doi.org/10.1016/j.matchemphys.2020.122915

    Article  CAS  Google Scholar 

  15. Guzel Kaya G, Deveci H (2020) Synergistic effects of silica aerogels/xerogels on properties of polymer composites: A review. J Ind Eng Chem 89:13–27. https://doi.org/10.1016/j.jiec.2020.05.019

    Article  CAS  Google Scholar 

  16. Chattopadhyay S, Saha Das S, Barua L et al (2019) A compact solvent extraction based 99Mo/99 mTc generator for hospital radiopharmacy. Appl Radiat Isot 143:41–46. https://doi.org/10.1016/j.apradiso.2018.10.017

    Article  CAS  PubMed  Google Scholar 

  17. Zeidman AB, Rodriguez-Narvaez OM, Moon J, Bandala ER (2020) Removal of antibiotics in aqueous phase using silica-based immobilized nanomaterials: A review. Environ Technol Innov 20:101030. https://doi.org/10.1016/j.eti.2020.101030

    Article  CAS  Google Scholar 

  18. Saptiama I, Kaneti YV, Suzuki Y et al (2017) Mesoporous alumina as an effective adsorbent for molybdenum (Mo) toward instant production of radioisotope for medical use. Bull Chem Soc Jpn 90:1174–1179. https://doi.org/10.1246/bcsj.20170184

    Article  CAS  Google Scholar 

  19. Mariscal R, Rojas S, Gómez-Cortés A et al (2002) Support effects in Pt/TiO2–ZrO2 catalysts for NO reduction with CH4. Catal Today 75:385–391. https://doi.org/10.1016/S0920-5861(02)00087-1

    Article  CAS  Google Scholar 

  20. Pérez-Hernández R, Gómez-Cortés A, Arenas-Alatorre J et al (2005) SCR of NO by CH4 on Pt/ZrO2–TiO2 sol–gel catalysts. Catal Today 107–108:149–156. https://doi.org/10.1016/j.cattod.2005.07.080

    Article  CAS  Google Scholar 

  21. Goldberg S (1993) Constant Capacitance Model. 278–307

  22. Badillo-Almaraz VE, López-Reyes C, Soriano-Rodríguez JM (2018) Equilibrium studies and modeling on the removal of 56Mn(II) by alumina and kaolinite. J Radioanal Nucl Chem 316:571–578. https://doi.org/10.1007/s10967-018-5823-3

    Article  CAS  Google Scholar 

  23. Baes CF, Mesmer RS (1976) The Hydrolysis of Cations. Wiley-Interscience, New York, United States

    Google Scholar 

  24. Zhu W, Yang H, Xie Y et al (2016) Hierarchically porous titania xerogel monoliths: Synthesis, characterization and electrochemical properties. Mater Res Bull 73:48–55. https://doi.org/10.1016/j.materresbull.2015.08.025

    Article  CAS  Google Scholar 

  25. Sing KSW, Everett DH, Haul RAW et al (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  26. Dash A, Chakravarty R (2014) Pivotal role of separation chemistry in the development of radionuclide generators to meet clinical demands. RSC Adv 4:42779–42803. https://doi.org/10.1039/c4ra07218a

    Article  CAS  Google Scholar 

  27. Dash A, Chakravarty R, Ram R et al (2012) Development of a 99Mo/99mTc generator using alumina microspheres for industrial radiotracer applications. Appl Radiat Isot 70:51–58. https://doi.org/10.1016/j.apradiso.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  28. Metwally SS, Attallah MF (2019) Impact of surface modification of chabazite on the sorption of iodine and molybdenum radioisotopes from liquid phase. J Mol Liq 290:111237. https://doi.org/10.1016/j.molliq.2019.111237

    Article  CAS  Google Scholar 

  29. Fallah N, Taghizadeh M, Hassanpour S (2018) Selective adsorption of Mo(VI) ions from aqueous solution using a surface-grafted Mo(VI) ion imprinted polymer. Polymer (Guildf) 144:80–91. https://doi.org/10.1016/j.polymer.2018.04.043

    Article  CAS  Google Scholar 

  30. Chakravarty R, Bahadur J, Lohar S et al (2019) Solid state synthesis of mesoporous alumina: A viable strategy for preparation of an advanced nanosorbent for 99Mo/99mTc generator technology. Microporous Mesoporous Mater 287:271–279. https://doi.org/10.1016/j.micromeso.2019.06.020

    Article  CAS  Google Scholar 

  31. Korde A, Mallia M, Shinto A et al (2014) Improved kit formulation for preparation of 99mTc-HYNIC-TOC: Results of preliminary clinical evaluation in imaging patients with neuroendocrine tumors. Cancer Biother Radiopharm 29:387–394. https://doi.org/10.1089/cbr.2014.1657

    Article  CAS  PubMed  Google Scholar 

  32. Chen YC, Lu C (2014) Kinetics, thermodynamics and regeneration of molybdenum adsorption in aqueous solutions with NaOCl-oxidized multiwalled carbon nanotubes. J Ind Eng Chem 20:2521–2527. https://doi.org/10.1016/j.jiec.2013.10.035

    Article  CAS  Google Scholar 

  33. Orrego P, Hernández J, Reyes A (2019) Uranium and molybdenum recovery from copper leaching solutions using ion exchange. Hydrometallurgy 184:116–122. https://doi.org/10.1016/j.hydromet.2018.12.021

    Article  CAS  Google Scholar 

  34. Denkova AG, Terpstra BE, Steinbach OM et al (2013) Adsorption of Molybdenum on Mesoporous Aluminum Oxides for Potential Application in Nuclear Medicine. Sep Sci Technol 48:1331–1338. https://doi.org/10.1080/01496395.2012.736443

    Article  CAS  Google Scholar 

  35. Hamed MM, Rizk HE, Ahmed IM (2018) Adsorption behavior of zirconium and molybdenum from nitric acid medium using low-cost adsorbent. J Mol Liq 249:361–370. https://doi.org/10.1016/j.molliq.2017.11.049

    Article  CAS  Google Scholar 

  36. Brion-Roby R, Gagnon J, Nosrati S et al (2018) Adsorption and desorption of molybdenum(VI) in contaminated water using a chitosan sorbent. J Water Process Eng 23:13–19. https://doi.org/10.1016/j.jwpe.2018.02.016

    Article  Google Scholar 

  37. Attallah MF, Youssef MA, Imam DM (2020) Preparation of novel nano composite materials from biomass waste and their sorptive characteristics for certain radionuclides. Radiochim Acta 108:137–149. https://doi.org/10.1515/ract-2019-3108

    Article  CAS  Google Scholar 

  38. Hamed MM, Ahmed IM, Holiel M (2019) Retention behavior of anionic radionuclides using metal hydroxide sludge. Radiochim Acta. https://doi.org/10.1515/ract-2019-0010

    Article  Google Scholar 

  39. Lian J, Zhou F, Chen B et al (2020) Enhanced adsorption of molybdenum(VI) onto drinking water treatment residues modified by thermal treatment and acid activation. J Clean Prod 244:118719. https://doi.org/10.1016/j.jclepro.2019.118719

    Article  CAS  Google Scholar 

  40. Moret JLTM, Alkemade J, Upcraft TM et al (2020) The application of atomic layer deposition in the production of sorbents for 99Mo/99mTc generator. Appl Radiat Isot 164:109266. https://doi.org/10.1016/j.apradiso.2020.109266

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Gan Y, Guo S et al (2018) Advantages of titanium xerogel over titanium tetrachloride and polytitanium tetrachloride in coagulation: A mechanism analysis. Water Res 132:350–360. https://doi.org/10.1016/j.watres.2017.12.081

    Article  CAS  PubMed  Google Scholar 

  42. Puigdomenech I (2016) MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms)-Hydra chemical equilibrium software

Download references

Acknowledgements

Authors are thankful to Juan Vidal for conducting radiochemical measurements and also to the Reactor Department personnel (ININ) for their assistance in the radionuclide production. Moreno-Gil would like to acknowledge the scholarship received from the Mexican National Council of Science and Technology (CONACyT-Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Badillo-Almaraz.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Gil, N., Badillo-Almaraz, V.E., Pérez-Hernández, R. et al. Comparison of the sorption behavior of 99Mo by Ti-, Si-, Ti-Si-xerogels and commercial sorbents. J Radioanal Nucl Chem 328, 679–690 (2021). https://doi.org/10.1007/s10967-021-07663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07663-6

Keywords

Navigation