Skip to main content
Log in

Determination of boron in in-house graphite reference material by instrumental charged particle activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Due to high thermal neutron absorption cross-section, boron (B) content is a binding specification for nuclear grade graphite. Reliable analytical methods are essential to determine boron at trace to ultra-trace levels. Analytical Chemistry Division, Bhabha Atomic Research Centre, India has prepared an in-house graphite reference material (GRM). A Charged particle activation analysis methodology has been developed for quantification of B in graphite matrix. Detection limit for boron using this methodology is 1.4 mg kg−1. This in-house GRM can be used for quantification of B in unknown graphite samples, validating existing analytical methods and for the development of new analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Graphite Statistics and Information, USGS. https://www.usgs.gov/centers/nmic/graphite-statistics-and-information Accessed 9 Sept 2019

  2. Nightingale RE (1962) Nuclear graphite. Division of Technical Information, United States Atomic Energy Commission, Academic Press

  3. Burchell T, Bratton R, Windes W (2007) NGNP graphite selection and acquisition. Oak Ridge National Laboratory

    Book  Google Scholar 

  4. Datta SP, Rattan RK, Suribabu K, Datta S (2002) Fractionation and colorimetric determination of boron in soils. J Plant Nutr Soil Sci 165:179–184

    Article  CAS  Google Scholar 

  5. Liv L, Nakiboğlu N (2016) Simple and rapid voltammetric determination of boron in water and steel samples using a pencil graphite electrode. Turk J Chem 40:412–421

    Article  CAS  Google Scholar 

  6. Venkatesh K, Sumit C, Granthali S, Shailaja P, Manisha V, Sanjukta AK, Sanjiv K, Acharya R, Pujari PK, Reddy AVR (2014) Determination of boron concentration in borosilicate glass, boron carbide and graphite samples by conventional wet-chemical and nuclear analytical methods. J Radioanal Nucl Chem 302: 1425-1428

  7. Rusnáková L, Andruch V, Balogh IS, Škrlíková J (2011) A dispersive liquid–liquid microextraction procedure for determination of boron in water after ultrasound-assisted conversion to tetrafluoroborate. Talanta 85(1):541–545

    Article  CAS  Google Scholar 

  8. Yamane T, Kouzaka Y, Hirakawa M (2001) Continuous flow system for the determination of trace boron in iron and steel utilizing in-line preconcentration/separation by Sephadex column coupled with fluorimetric detection. Talanta 55(2):387–393

    Article  CAS  Google Scholar 

  9. Xin Li L, Tai Cheng D, Yi H, Xiao YuJ, Wei Na Z, Hang Ting C (2010) Slurry nebulization-inductively coupled plasma mass spectrometry with solution calibration for determination of ultra trace boron in high pure nuclear graphite powder. Chin J Anal Chem 38:693–696

    Article  Google Scholar 

  10. Thangavel S, Dash K, Dhavile SM, Sahayam AC (2013) Determination of trace levels of boron in graphite powder by inductively coupled plasma-optical emission spectrometry (ICP-OES). Anal Methods 5:5799–5803

    Article  CAS  Google Scholar 

  11. Venkatesh K, Sanjukta AK, Tambe GS, Pandey SP, Kumar SD, Kameswaran R, Reddy AVR, Sanjiv K, Babu R, Nataraju V (2013) Analysis of graphite electrodes for determination of boron at trace levels. BARC/2013/E/004, India

  12. Sanjukta AK, Venkatesh K, Swain KK, Manisha V, Granthai SK, Pandey SP, Remya Devi PS, Ghosh M, Verma R (2016) Preparation of in-house graphite reference material for boron. BARC/2016/E/005, India

  13. Resano M, Briceño J, Aramendía M, Belarra M (2007) Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of boron in plant tissues. Anal Chim Acta 582(2):214–222

    Article  CAS  Google Scholar 

  14. Krejc̆ová A, C̆ernohorský T (2003) The determination of boron in tea and coffee by ICP-AES method. Food Chem 82(2): 303-308

  15. Sun DH, Ma MRL, McLeod CW, Wang XR (2000) Determination of boron in serum, plasma and urine by inductively coupled plasma mass spectrometry (ICP-MS). Use of mannitol-ammonia as diluent and for eliminating memory effect. J Anal At Spectrom 15:257–261

    Article  CAS  Google Scholar 

  16. Garton F (1957) The spectrographic determination of boron in graphite. Spectrochim Acta 9:297–306

    Article  CAS  Google Scholar 

  17. Gianni F, Potenza F (1961) Spectrographic determination of boron in nuclear graphite. Anal Chim Acta 25:90–92

    Article  CAS  Google Scholar 

  18. Hladký Z, Fišera M (1994) Determination of trace impurities in high-purity graphite by electrothermal atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry. J Anal At Spectrom 9:1285–1287

    Article  Google Scholar 

  19. Rossi G, Soldani G (1972) An emission-spectrographic method for the determination of boron in nuclear-grade graphite. Analyst 97:124–130

    Article  CAS  Google Scholar 

  20. Miyatani T, Suzuki H, Yoshimoto O (1993) Quantitative analysis of trace amounts of impurities contaminating pure graphite with ICP-MS and metal atomiser FLAAS. IAEA-TECDOC-690

  21. Cyrus F, Janus Y (1955) Spectrochemical determination of boron in carbon and graphite. Anal Chem 27(11):1714–1721

    Article  Google Scholar 

  22. Acharya R (2009) Prompt gamma-ray neutron activation analysis methodology for determination of boron from trace to major contents. J Radioanal Nucl Chem 281(2):291–294

    Article  CAS  Google Scholar 

  23. Chhillar S, Acharya R, Sodaye S, Pujari PK (2014) Development of particle induced gamma-ray emission methods for non-destructive determination of isotopic composition of boron and its total concentration in natural and enriched samples. Anal Chem 86(22):11167–11173

    Article  CAS  Google Scholar 

  24. Sarkar A, Aggarwal SK, Sasibhusan K, Alamelu D (2010) Determination of sub-ppm levels of boron in ground water samples by laser induced breakdown spectroscopy. Microchim Acta 168(1–2):65–69

    Article  CAS  Google Scholar 

  25. Guo LB, Zhu ZH, Li JM, Tang Y, Tang SS, Hao ZQ, Li XY, Lu YF, ZengXY, (2018) Determination of boron with molecular emission using laser-induced breakdown spectroscopy combined with laser-induced radical fluorescence. Opt Express 26(3):2634–2642

    Article  CAS  Google Scholar 

  26. Chaturvedula S, Sastri RC (1981) Simultaneous determination of boron and lithium by charged particle activation analysis. Anal Chem 53(6):765–770

    Article  Google Scholar 

  27. Rao VR, Khathing DT, Chowdhury DP, Gangadharan S (1991) An external-beam charged-particle (alpha) activation system for direct trace element analysis in liquids. Meas Sci Technol 2:610–615

    Article  CAS  Google Scholar 

  28. Datta J, Dasgupta S, Guin R, Venkatesh M, Suvarna S, Chowdhury DP (2015) Determination of total arsenic and speciation of As(III) and As(V) in ground water by charged particle activation analysis. J Radioanal Nucl Chem 308(3):927–933

    Article  CAS  Google Scholar 

  29. Bankert SF, Sauter GD, Bloom SD (1972) Charged-particle activation analysis for trace impurities in water. IEEE Trans Nucl Sci 19:191–193

    Article  CAS  Google Scholar 

  30. Sastri CS, Blondiaux G, Möller P, Petri H (1996) Determination of chlorine in metals and ceramic materials by low energy deuteron activation analysis. Nucl Instrum Methods Phys Res B 119:425–428

    Article  CAS  Google Scholar 

  31. Lacroix R, Blondiaux G, Giovagnoli A, Valladon M, Debrun JL, Coquille R, Gauneau M (1984) Determination of residual impurities in InP grown by the Czochralski method, using charged particle activation analysis. J Radioanal Nucl Chem 83:91–97

    Article  CAS  Google Scholar 

  32. Degering D, Unterricker S, Stolz W (1988) Charged particle activation analysis of geological samples at the Rossendorf cyclotron. J Radioanal Nucl Chem 122:265–270

    Article  Google Scholar 

  33. Chowdhury DP, Saha SK, Pal S, Mathur PK (2002) Determination of rare earth elements by charged particle activation analysis in geological materials. J Radioanal Nucl Chem 251:481–486

    Article  CAS  Google Scholar 

  34. Chowdhury DP, Arunachalam J, Verma R, Pal S, Gangadharan S (1992) Determination of oxygen impurity in high purity materials by charged particle activation analysis using alpha projectiles. J Radioanal Nucl Chem 158:463–470

    Article  CAS  Google Scholar 

  35. Ziegler JF, Ziegler MD, Biersack JP (2008) The stopping and range of ions in matter, SRIM—Version 2008.04 (2008). www.SRIM.org. Accessed 15 Dec 2019

  36. Skakun EA, Baty VG, Rakivnenko YN, Rastrepin OA (1987) Cross Sections of (p, γ) reactions on isotopes 54Fe,112Sn and 114Cd at proton energies up to 9 MeV. Sov J Nucl Phys 45:384–386

    Google Scholar 

  37. Boukharouba N, Brient CE, Grimes SM, Mishra V, Pedroni RS (1992) Low Energy Optical Model Studies of Proton Scattering on 54Fe and 56Fe. Phys Rev C Nucl Phys 46:2375–2386

    Article  CAS  Google Scholar 

  38. Kaufman S (1960) Reactions of protons with 58Ni and 60Ni. Phys Rev 117:1532–1538

    Article  CAS  Google Scholar 

  39. Kumabe I, Ogata H, Komatuzaki T, Inoue N, Tomita S, Yamada Y, Yamaki T, Matsumoto S (1963) (p, α) reactions on the even nuclei 58Ni, 60Ni and 56Fe. Nucl Phys 46:437–453

    Article  CAS  Google Scholar 

  40. Kalinin SP, Ogloblin AA, Petrov YM (1957) The excitation curve of reactions 7Li(p, n)74Be, 10B(p, α)74Be, 11B(p, n)116C and the energy levels of nuclei 8Be, 11C and 12C. Sov At Energy 2:193–196

    Article  CAS  Google Scholar 

  41. Ricci E, Hahn RL (1965) Theory and experiment in rapid, sensitive helium-3 activation analysis. Anal Chem 37(6):742–748

    Article  CAS  Google Scholar 

  42. Datta J, Ghosh M, Dasgupta S (2017) Simultaneous quantification of Zr, Cr and Cu in copper alloy matrix using charged particle activation analysis. J Radioanal Nucl Chem 314:1161–1167

    Article  CAS  Google Scholar 

  43. ASTM (2013) Standard practice for using significant digits in test data to determine conformance with specifications, vol E29–13. American Society for Testing and Materials, pp E29–13

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. A. K. Tyagi, Associate Director, Chemistry Group and Head, Analytical Chemistry Division, BARC for his support and encouragement. The authors would earnestly like to thank the support received from the cyclotron staff at VECC, Kolkata to carry out the ion beam experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dasgupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, S., Datta, J. & Swain, K.K. Determination of boron in in-house graphite reference material by instrumental charged particle activation analysis. J Radioanal Nucl Chem 328, 33–38 (2021). https://doi.org/10.1007/s10967-021-07655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07655-6

Keywords

Navigation