Skip to main content
Log in

Effect of weighing uncertainty on assay values by isotope dilution mass spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Isotope dilution mass spectrometry using traceable standards as spikes coupled with isotope ratio measurements by thermal ionization or inductively coupled plasma mass spectrometer instruments is the preferred methodology for element content determinations and isotopic composition measurements in a variety of applications, especially those involving highly radioactive isotopes like the actinide elements. This assay measurement technique takes advantage of the sensitivity of modern mass spectrometry instrumentation to minimize the amount of material utilized for the measurement and enables the measurement sequence to be automated, with minimal intervention from analyst during the measurement process. LA-UR-20-28878.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moody KJ, Grant PM, Hutcheon ID (2014) Nuclear forensic analysis, 2nd edn. CRC Press

  2. Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Z Chem Rev 113:884–900

    Article  CAS  Google Scholar 

  3. Sturm M, Richter S, Aregbe Y, Wellum R, Mialle S, Mayer K, Prohaska T (2014) Evaluation of chronometers in plutonium age determination for nuclear forensics: What if the ‘Pu/U clocks’ do not match. J Radioanal Nucl Chem 302:399–411

    Article  CAS  Google Scholar 

  4. Rim JH, Kuhn KJ, Tandon L, Xu N, Porterfield DR, Worley CG, Thomas MR, Spencer KJ, Stanley FE, Lujan EJ, Garduno K, Trellue HR (2017) Determination of origin and intended use of plutonium metal using nuclear forensic techniques. Forensic Sci Int 273:e1–e9

    Article  CAS  Google Scholar 

  5. Mathew K, Kayzar-Boggs T, Varga Z, Gaffney A, Denton J, Fulwyler J, Garduno K, Gaunt A, Inglis J, Keller R, Kinman W, Labotka D, Lujan E, Maassen J, Mastren T, May I, Mayer K, Nicholl A, Ottenfeld C, Parsons-Davis T, Porterfield D, Rim J, Rolison J, Stanley F, Steiner R, Tandon L, Thomas M, Torres R, Treinen K, Wallenius M, Wende A, Williams R, Wimpenny J (2019) Intercomparison of the radio-chronometric ages of plutonium-certified reference materials with distinct isotopic compositions. Anal Chem 91:11643–11652

    Article  CAS  Google Scholar 

  6. Crozet M, Roudil D, Rigaux C, Bertorello C, Picart S, Maillard C (2019) EQRAIN. Uranium and plutonium interlaboratory exercises from 1997 to 2016: comparison to ITVs-2010. J Radioanal Nucl Chem 319:1013–1021

    Article  CAS  Google Scholar 

  7. De Bièvre P, Peiser HS (1997) Basic equations and uncertainties in isotope-dilution mass spectrometry for traceability to SI of values obtained by this primary method. Fresenius J Anal Chem 359:523–525

    Article  Google Scholar 

  8. Adriaens AG, Fasset JD, Kelly WR, Simons DS, Adams FC (1992) Determination of uranium and thorium concentration in soils: comparison of isotope dilution—secondary ion mass spectrometry and isotope dilution-thermal ionization mass spectrometry. Anal Chem 64:2945–2950

    Article  CAS  Google Scholar 

  9. Bürger S, Balsley SD, Baumann S, Berger J, Boulyga SF, Cunningham JA, Kappel S, Köpf A, Poths J (2012) Uranium and plutonium analysis of nuclear material samples by multi-collector thermal ionization mass spectrometry: quality control, measurement uncertainty, and metrological traceability. Int J Mass Spectrom 311:40–50

    Article  Google Scholar 

  10. Betti M, Tamborini G, Koch L (1999) Use of secondary ion mass spectrometry in nuclear forensic analysis for the characterization of plutonium and highly enriched uranium particles. Anal Chem 71:2616–2622

    Article  CAS  Google Scholar 

  11. Kraiem M, Richter S, Erdmann N, Kühn H, Hedberg M, Aregbe Y (2012) Characterizing uranium oxide reference particles for isotopic abundances and uranium mass by single particle isotope dilution mass spectrometry. Anal Chim Acta 748:37–44

    Article  CAS  Google Scholar 

  12. Park JH, Choi EJ (2017) Simultaneous determination of the quanity and isotopic ratios of individual micro-particles by isotope dilution mass spectrometry (ID-TIMS). Talanta 160:600–606

    Article  Google Scholar 

  13. Ranebo Y, Hedberg PML, Whitehouse MJ, Ingenri K, Littmann S (2009) Improved isotopic SIMS measurements of uranium particles for nuclear safeguard purposes. J Anal At Spectrom 24:277–287

    Article  CAS  Google Scholar 

  14. Varga Z (2008) Application of laser ablation inductively coupled plasma mas spectrometry for the isotopic analysis of single uranium particles. Anal Chim Acta 625:1–7

    Article  CAS  Google Scholar 

  15. Manard BT, Quarles CD Jr, Wylie EM, Xu N (2017) Laser ablation: inductively couple plasma—mass spectrometry/laser induced break down spectroscopy: a tandem technique for uranium particle characterization. J Anal At Spectrom 32(9):1680–1687

    Article  CAS  Google Scholar 

  16. Milton MJT, Quinn TJ (2001) Primary Methods for the measurement of amount of substance. Metrologia 38:289–296

    Article  CAS  Google Scholar 

  17. Hoelzl R, Hoelzl C, Kotz L, Fabry L (1998) The optimal amount of isotopic spike solution for ultratrace analysis by isotope dilution mass spectrometry. Accredit Qual Assur 3:185–188

    Article  CAS  Google Scholar 

  18. Davies W, Gray W (1964) A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant. Talanta 11:1203–1211

    Article  CAS  Google Scholar 

  19. Wylie EM, Colletti LM, Walker LF, Lujan EJW, Garduno K, Mathew KJ (2018) Comparison of the Davies & Gray titrimetric method with potassium dichromate and ceric titrants. J Radioanal Nucl Chem 318:227–233

    Article  CAS  Google Scholar 

  20. Holland MK, Weiss JR, Pietri CE (1978) Controlled-potential coulometric determination of plutonium. Anal Chem 50:236–240

    Article  CAS  Google Scholar 

  21. Mathew KJ, Canaan RD, Hexel C, Giaqunito J, Krichinsky AM (2015) Qualification and initial characterization of a high-purity 233U spike for use in uranium analyses. Int J Mass Spectrom 389:47–53

    Article  CAS  Google Scholar 

  22. Essex RM, Williams RW, Rogers KT, Hexel CR, Parsons-Davis T, Treinen KC (2021) A new highly enriched 233U reference material for improved simultaneous dterminations of uranium amount and isotope amount ratios in trace level samples. Talanta 221:121638

    Article  CAS  Google Scholar 

  23. Essex RM, Williams RW, Treinen KC, Hubert A, Humphrey MA, Inglis JD, Kinman WS, Maassen J, Penkin MV, Steiner RE (2020) A highly-enriched 244Pu reference material for nuclear safeguards and nuclear forensics measurements. J Radioanal Nucl Chem 324:257–270

    Article  CAS  Google Scholar 

  24. Penkin MV, Humphrey MA, Kryzhanovsky AA, Vyachin VN, Iyengar A (2016) Separation of high-purity 244Pu for safeguards application. J Radioanal Nucl Chem 307:2091–2094

    Article  CAS  Google Scholar 

  25. Hasozbek A, Mathew KJ, Orlowicz G, Hui N, Srinivasan B, Soriano M, Narayanan U (2013) Uranium isotope dilution mass spectrometry using NBL certified reference materials as spikes. J Radioanal Nucl Chem 296:447–451

    Article  CAS  Google Scholar 

  26. Mathew KJ, Essex RM, Hasozbek A, Orlowicz G, Soriano M (2014) Uranium isotope-amount ratios in certified reference material 116-A—Uranium (enriched) metal assay and isotopic standard. Int J Mass Spectrom 369:48–58

    Article  CAS  Google Scholar 

  27. Mathew KJ, Mason P, Voeks A, Narayanan U (2012) Uranium isotope abundance ratios in natural uranium metal certified reference material 112-A. Int J Mass Spectrom 315:8–14

    Article  CAS  Google Scholar 

  28. Mathew KJ, Singleton GL, Essex RM, Hasozbek A, Orlowicz G, Soriano M (2013) Characterization of the uranium isotopic abundances in depleted uranium metal assay standard. J Radioanal Nucl Chem 296:435–440

    Article  CAS  Google Scholar 

  29. BIPM (2008) Joint committee for guides in metrology, evaluation of measurement data—guide to the expression of uncertainty in measurement, JCGM 100

  30. Bürger S, Essex RM, Mathew KJ, Richter S, Thomas RB (2010) Implementation of guide to the expression of Uncertainty in Measurement (GUM) to multi-collector TIMS uranium isotope ratio metrology. Int J Mass Spectrom 294:65–76

    Article  Google Scholar 

  31. GUM Workbench, Metrodata GmbH. www.metrodata.de

Download references

Acknowledgements

Christine is thankful to Dr. Vinai K Rai from School of Earth and Space Exploration, Arizona State University for hosting her during the summer of 2019 and for exposing her to the state-of-the-art ICP mass spectrometry measurement techniques and to the scientific methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Mathew.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, C.E., Rai, V.K., Ottenfeld, C. et al. Effect of weighing uncertainty on assay values by isotope dilution mass spectrometry. J Radioanal Nucl Chem 328, 235–243 (2021). https://doi.org/10.1007/s10967-021-07646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07646-7

Keywords

Navigation