Skip to main content
Log in

Terrestrial gamma radiation dose rate mapping and influence of building materials: case study at Curtin University campus (Miri, Sarawak, Malaysia)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Detailed mapping of indoor and outdoor terrestrial gamma radiation dose (TGRD) rate at Curtin University campus (Miri, Sarawak, Malaysia) shows rates ranging from 50 to 150 nGy/h with an average of 89.8 nGy/h. Indoor locations with artificial ground cover have on average 37% higher TGRD rates compared to outdoor sites. The spatial influence of building materials on the ambient TGRD rates is clear. The annual effective dose is 0.65 mSv which is well within guidelines indicating there is no radiation risk to campus residents. Of this, 0.15 mSv is due to building materials, of which tiles have the highest contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. UNSCEAR (1962) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. Annex E: Radiation from natural sources 1–95, United Nations, New York

  2. UNSCEAR (2000) Sources and effect of ionizing radiation, Volume 1: Sources, United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations. New York, USA, 654 p

  3. ICRP International Commission on Radiological Protection (2007) Extract from the 2007 recommendations of the International Commission on Radiological Protection. Annals of the ICRP, Publication 103, Elsevier, 34 p

  4. Nuclear Energy Agency (2011) Evolution of ICRP Recommendations 1977, 1990 and 2007. Radiological Protection 2011, OECD

  5. Shahbazi-Gahrouei D, Gholami M, Setayandeh S (2013) A review on natural background radiation. Adv Biomed Res 2(3):1–6

    Google Scholar 

  6. Ramli AT, Sahrone S, Wagiran H (2005) Terrestrial gamma radiation dose study to determine baseline for environmental radiological health practices in Melaka state. Malaysia J Radiol Prot 25:435–450

    Article  PubMed  Google Scholar 

  7. Ball TK, Miles JCH (1993) Geological and geochemical factors affecting the radon concentration in homes in Cornwall and Devon. UK Environ Geochem Health 15(1):27–36

    Article  CAS  PubMed  Google Scholar 

  8. EPA Environmental Protection Agency (2016) A Citizens Guide to Radon. Accessed June 2020.https://www.epa.gov/sites/production/files/2016-12/documents/2016_a_citizens_guide_to_radon.pdf

  9. Alnour IA, Wagiran H, Ibrahim N, Laili Z, Omar M, Hazmah S, Idi BY (2012) Natural radioactivity measurements in the granite rock of quarry sites, Johor, Malaysia. Radiat Phys Chem 81:1842–1847

    Article  CAS  Google Scholar 

  10. Schön JH (2015) Physical properties of rocks. Volume 65, 2nd Edition. In: Developments in petroleum science, Elsevier, p 512

  11. European Commission (1999a) Radiation Protection 106: Technical recommendations on measurements of external environmental gamma radiation doses. Report of EURADOS Working Group 12, 191 p, Luxembourg, ISBN 92-828-7811-2

  12. Saleh MA, Ramli AT, Alajerami Y, Aliyu ABS (2013) Assessment of environmental 226Ra, 232Th and 40K concentrations in the region of elevated radiation background in Segama District, Johor, Malaysia. J Environ Radioact 124:130–140

    Article  CAS  PubMed  Google Scholar 

  13. Ramli AT, Apriantoro NH, Wagiran H (2009) Assessment of radiation dose rates in high terrestrial gamma radiation area of Selama District, Perak. Malaysia Appl Phys Res 1(2):45–52

    CAS  Google Scholar 

  14. Ismail AF, Yasir MS, Majid AA, Bahari I, Yahaya R, Rahman IA (2009) Radiological studies of naturally occurring radioactive materials in some Malaysia’s sand used in building construction. Malaysian J Anal Sci 13(1):29–35

    Google Scholar 

  15. Stals M, Verhoeven S, Bruggeman M, Pellens V, Schroeyers W, Schreurs S (2014) The use of portable equipment for the activity concentration index determination of building materials: method validation and survey of building materials on the Belgian market. J Environ Radioact 127:56–63

    Article  CAS  PubMed  Google Scholar 

  16. Abdullahi S, Ismail AF, Samat S (2019) Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia. Nucl Eng Technol 51:325–336

    Article  CAS  Google Scholar 

  17. Abdullahi S, Ismail AF, Samat S (2019) Radiological characterization of building materials used in Malaysia and assessment of external and internal doses. Nucl Sci Techn. https://doi.org/10.1007/s41365-019-569-3

    Article  Google Scholar 

  18. Clouvas A, Xanthos S, Antonopoulos-Domis M (2001) Extended survey of indoor and outdoor terrestrial gamma radiation in Greek urban areas by in situ gamma spectrometry with a portable Ge detector. Radiat Prot Dosimetry 94(3):233–246

    Article  CAS  PubMed  Google Scholar 

  19. Berens AS, Diem J, Stauber C, Dai D, Foster S, Rothbenberg R (2017) The use of gamma-survey measurements to better understand radon potential in urban areas. Sci Total Environ 607–608:888–899

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garba NN, Ramli AT, Saleh MA, Sanusi MS, Gabdo HT (2015) Terrestrial gamma radiation dose rates and radiological mapping of Terengganu state, Malaysia. J Radioanal Nucl Chem 303:1785–1792

    CAS  Google Scholar 

  21. Ramli AT (1997) Environmental terrestrial gamma radiation dose and its relationship with soil type and underlying geological formations in Pontian District. Malaysia Appl Radiat Isotopes 48(3):407–412

    Article  CAS  Google Scholar 

  22. Ramli AT, Hussein AWMA, Lee MH (2001) Geological influence on terrestrial gamma radiation dose rate in the Malaysian State of Johore. Appl Radiat Isot 54:327–333

    Article  CAS  PubMed  Google Scholar 

  23. Ramli AT, Rahman ATA, Lee MH (2003) Statistical prediction of terrestrial gamma radiation dose rate based on geological features and soil types in Kota Tinggi district, Malaysia. Appl Radiat Isot 59:393–405

    Article  CAS  PubMed  Google Scholar 

  24. Ramli AT, Wagiran H, Lee SK, Apriantoro NH, Wood AK (2009) Health risk implication of high background radiation dose rate in Kampung Sungai Durian, Kinta District, Perak. Malaysia Glob J Health Sci 1(2):140–149

    Google Scholar 

  25. Lee SK, Wagiran H, Ramli AT, Apriantoro NH, Wood AK (2009) Radiological monitoring: terrestrial natural radionuclides in Kinta District, Perak, Malaysia. J Environ Radioact 100:368–374

    Article  CAS  PubMed  Google Scholar 

  26. Saleh MA, Ramli AT, Alajerami Y, Suhairul H, Aliuu AS, Basri NA (2013) Terrestrial gamma radiation and its statistical relation with geological formation in the Mersing district, Johor. Malaysia Radiat Prot Dosimetry 156(2):246–252

    Article  PubMed  Google Scholar 

  27. Gabdo HT, Ramli AT, Sanusi MS, Saleh MA, Garba NN (2014) Terrestrial gamma dose rate in Pahang state Malaysia. J Radioanal Nucl Chem 299(3):1793–1798

    Article  CAS  Google Scholar 

  28. Norbani NE, Salim NAA, Saat A, Hamzah Z, Ramli AT, Idris WMRW, Jaafar MZ, Bradley DA, Rahman ATA (2014) Terrestrial gamma radiation dose rates (TGRD) from surface soil in Negeri Sembilan, Malaysia. Radiat Phys Chem 104:112–117

    Article  CAS  Google Scholar 

  29. Sanusi MSM, Ramli AT, Gabdo HT, Garba NN, Heryanshah A, Wagiran H, Said MN (2014) Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia. J Environ Radioact 135:67–74

    Article  CAS  PubMed  Google Scholar 

  30. Ahmad N, Jaafar Bakhash M, Rahim M (2015) An overview on measurements of natural radioactivity in Malaysia. J Radiat Res Appl Sci 8:136–141

    Article  CAS  Google Scholar 

  31. Garba NN, Ramli AT, Saleh MA, Sanusi MS, Gabdo HT (2016) Radiological mapping of Kelantan, Malaysia, using terrestrial radiation dose rate. Isot Environ Health Stud 52(3):214–218

    Article  CAS  Google Scholar 

  32. Sanusi MSM, Ramli AT, Hassan WMSW, Lee MH, Izham A, Said MN, Wagiran H, Heryanshah A (2017) Assessment of impact of urbanisation on background radiation exposure and human health risk estimation in Kuala Lumpur, Malaysia. Environ Int 104:91–101

    Article  CAS  PubMed  Google Scholar 

  33. Izham A, Ramli AT, Saridan Wan Hassan WM, Idris HN, Basri NA (2017) Terrestrial gamma radiation dose rate of west Sarawak. EPJ Web of Conf 156:00006. https://doi.org/10.1051/epjconf/201715600006

    Article  CAS  Google Scholar 

  34. Sulaiman I, Omar M (2010) Environmental radon/thoron concentrations and radiation levels in Sarawak and Sabah. J Nucl Relat Technol 7(1):1–13

    Google Scholar 

  35. Wetlands International (2010) A quick scan of peatlands in Malaysia. Petaling Jaya, Malaysia, Wetlands International-Malaysia, p 50

    Google Scholar 

  36. Wong Lua Ming J (2003) Status of Peat Swamp Forest of Sarawak. Sarawak Forestry Corporation/Alterra Wageningen UR, Kuching

    Google Scholar 

  37. Wannier M, Lesslar P, Lee C, Raven H, Sorkhabi R, Ibrahim A (2011) Geological excursions around Miri, Sarawak. Ecomedia Software, Miri, Malaysia, 279p. ISBN: 978-983-42160-3-0

  38. Polimaster (2009) Survey Meter PM 1405 Operation Manual. https://en.polimaster.com/catalog/electronic-dosimeters/survey-meter-pm1405/#tab-3

  39. Gabdo HT, Ramli AT, Saleh MA, Garba NN, Sanusi M (2016) Natural radioactivity measurements in Pahang State, Malaysia. Isot Environ Health Stud 52(3):298–308

    Article  CAS  Google Scholar 

  40. Lai KK, Hu SJ, Minato S, Kodaira K, Tan KS (1999) Terrestial gamma ray dose rates of Brunei Darussalam. Appl Radiat Isotopes Include Data Instrum Methods Agric Ind Med 50(3):599–608

    CAS  Google Scholar 

  41. Yasir MS, Ab Majid A, Yahaya R (2007) Study of natural radionuclides and its radiation hazard index in Malaysian building materials. J Radioanal Nucl Chem 273(3):539–541

    Article  CAS  Google Scholar 

  42. Ismail AF, Yasir MS, Ab A, Yahaya R, Bahari I (2009) Radiological hazard of natural radionuclide in Portland cement of Peninsular Malaysia. Sains Malaysiana 38:407–411

    CAS  Google Scholar 

  43. Ibrahim N (1999) Natural activities of 238U, 232Th and 40K in building materials. J Environ Radioact 43(3):255–258

    Article  CAS  Google Scholar 

  44. Majid AA, Ismail AF, Yasir MS, Yahaya R, Bahari I (2013) Radiological dose assessment of naturally occurring radioactive materials in concrete building materials. J Radioanal Nucl Chem 297:277–284

    Article  CAS  Google Scholar 

  45. Ismail AF, Abdullahi S, Samat S, Yasir MS (2018) Radiological dose assessment of natural radioactivity in Malaysia’s tiles using resrad-build computer code. Sains Malaysiana 47:1017–1023

    Article  CAS  Google Scholar 

  46. Abdullahi S, Ismail AF, Yasir MS (2020) Radiological hazard analysis of Malaysia’s ceramic materials using generic and RESRAD-BUILD computer code approach. J Radioanal Nucl Chem 324:301–315

    Article  CAS  Google Scholar 

  47. UNSCEAR (1993) Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York

    Google Scholar 

  48. Madruga MJ, Miró C, Reis M, Silva L (2019) Radiation exposure from natural radionuclides in building materials. Radiat Prot Dosimetry 185(1):57–65

    Article  CAS  Google Scholar 

  49. Viruthagiri G, Rajamannan B, Jawahar KS (2013) Radioactivity and associated radiation hazards in ceramic raw materials and end products. Radiat Prot Dosimetry 157:383–391

    Article  CAS  PubMed  Google Scholar 

  50. Joel ES, Maxwell O, Adewoyin OO, Ehi-Eromosele CO, Embong Z, Oyawoye F (2018) Assessment of natural radioactivity in various commercial tiles used for building purposes in Nigeria. MethodsX 5:8–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Turhan S, Arikan IH, Demirel H, Gungor N (2011) Radiometric analysis of raw materials and end products in the Turkish ceramics industry. Radiat Phys Chem 80:620–625

    Article  CAS  Google Scholar 

  52. Al-Hamarneh IF (2019) Radiological hazards for marble, granite and ceramic tiles used in buildings in Riyadh, Saudi Arabia. Environ Earth Sci 76(15):1. https://doi.org/10.1007/s12665-017-6849-5

    Article  CAS  Google Scholar 

  53. Kovler K, Friedmann H, Michalik B, Schroeyers W, Tsapalov A, Antropov S, Bituh T, Nicolaides D (2017) Basic aspects of natural radioactivity. In: Schroeyers W (ed) Naturally Occurring Radioactive Materials in Construction. Elsevier, Amsterdam, pp 13–36. https://doi.org/10.1016/C2016-0-00665-4

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors wish to express thanks to Curtin University Malaysia for granting permission to carry out this research. The authors are also grateful to Dr. S. Chidambaram for his initial thoughts to this research work and lending out the instrument. Special thanks to Rakesh Roshan Gantayat and Thennilan Subramaniam for their assistance in some of the data collection. Authors thank Dr. S. Venkatramanan for helping us to produce spatial maps in this paper. The authors would also like to thank the editor and anonymous reviewers for their constructive comments to further improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Dodge-Wan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 878 KB)

Supplementary file2 (DOCX 1113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodge-Wan, D., Mohan Viswanathan, P. Terrestrial gamma radiation dose rate mapping and influence of building materials: case study at Curtin University campus (Miri, Sarawak, Malaysia). J Radioanal Nucl Chem 328, 163–180 (2021). https://doi.org/10.1007/s10967-021-07641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07641-y

Keywords

Navigation