Skip to main content
Log in

Characterization of nuclear materials signatures using statistical analysis processing in conjunction with quantitative morphology: a preliminary study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Quantitative isotopic, elemental, and morphological data collected for five uranium oxide materials were subjected to advanced statistical processing. Materials were initially distinguished based on quantitative isotopic values and trace elemental analyses. Then, for the first time, quantitative morphological data was incorporated using advanced, custom software tools. Chemical and physical distinctions allowed for differentiation with 95% confidence levels in predicted class assignments for similar sample types. This study indicates that there is significant potential in applying statistical analysis processing to the detection and exploitation of quantitative morphology signatures within nuclear materials, both individually and in addition to more traditional data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mayer K, Wallenius M, Fanghänel T (2007) Nuclear forensic science—from cradle to maturity. J Alloys Compd 444–445:50–56. https://doi.org/10.1016/j.jallcom.2007.01.164

    Article  CAS  Google Scholar 

  2. Wallenius M, Mayer K, Ray I (2006) Nuclear forensic investigations: two case studies. Forensic Sci Int 156(1):55–62. https://doi.org/10.1016/j.forsciint.2004.12.029

    Article  CAS  PubMed  Google Scholar 

  3. Moody KJ, Grant PM, Hutcheon ID (2014) Nuclear forensic analysis, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  4. Tandon L, Hastings E, Banar J, Barnes J, Beddingfield D, Decker D, Dyke J, Farr D, FitzPatrick J, Gallimore D, Garner S, Gritzo R, Hahn T, Havrilla G, Johnson B, Kuhn K, LaMont S, Langner D, Lewis C, Majidi V, Martinez P, McCabe R, Mecklenburg S, Mercer D, Meyers S, Montoya V, Patterson B, Pereyra RA, Porterfield D, Poths J, Rademacher D, Ruggiero C, Schwartz D, Scott M, Spencer K, Steiner R, Villarreal R, Volz H, Walker L, Wong A, Worley C (2008) Nuclear, chemical, and physical characterization of nuclear materials. J Radioanal Nucl Chem 276(2):467–473. https://doi.org/10.1007/s10967-008-0528-7

    Article  CAS  Google Scholar 

  5. dos Santos HTlL, de Oliveira AMc, de Melo PcG, Freitas W, de Freitas APR (2013) Chemometrics: theory and application. In: Freitas L (ed) Multivariate analysis in management, engineering and the sciences. InTech. https://doi.org/10.5772/53866

  6. Brereton RG (2007) Pattern recognition. In: Applied chemometrics for scientists. Wiley, Chichester

  7. Esbensen KH (2004) An introduction to multivariate data analysis and experimental design. In: Multivariate data analysis—in practice. CAMO Software

  8. Thanasoulias NC, Parisis NA, Evmiridis NP (2003) Multivariate chemometrics for the forensic discrimination of blue ball-point pen inks based on their Vis spectra. Forensic Sci Int 138(1–3):75–84. https://doi.org/10.1016/j.forsciint.2003.08.014

    Article  CAS  PubMed  Google Scholar 

  9. Lesiak AD, Cody RB, Dane AJ, Musah RA (2015) Plant seed species identification from chemical fingerprints: a high-throughput application of direct analysis in real time mass spectrometry. Anal Chem 87(17):8748–8757. https://doi.org/10.1021/acs.analchem.5b01611

    Article  CAS  PubMed  Google Scholar 

  10. Bueno J, Lednev IK (2014) Raman microspectroscopic chemical mapping and chemometric classification for the identification of gunshot residue on adhesive tape. Anal Bioanal Chem 406(19):4595–4599

    Article  CAS  Google Scholar 

  11. McLaughlin G, Doty KC, Lednev IK (2014) Raman spectroscopy of blood for species identification. Anal Chem 86(23):11628–11633

    Article  CAS  Google Scholar 

  12. Musah RA, Espinoza EO, Cody RB, Lesiak AD, Christensen ED, Moore HE, Maleknia S, Drijfhout FP (2015) A high throughput ambient mass spectrometric approach to species identification and classification from chemical fingerprint signatures. Sci Rep 5:11520. https://doi.org/10.1038/srep11520

    Article  PubMed  PubMed Central  Google Scholar 

  13. Keegan E, Kristo MJ, Colella M, Robel M, Williams R, Lindvall R, Eppich G, Roberts S, Borg L, Gaffney A, Plaue J, Wong H, Davis J, Loi E, Reinhard M, Hutcheon I (2014) Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia. Forensic Sci Int 240:111–121. https://doi.org/10.1016/j.forsciint.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  14. Robel M, Kristo M (2007) Characterization of nuclear fuel using multivariate statistical analysis. J Environ Radioact 99:1789–1797

    Article  Google Scholar 

  15. Robel M, Kristo MJ (2008) Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material. J Environ Radioact 99(11):1789–1797. https://doi.org/10.1016/j.jenvrad.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  16. Ho DML, Jones AE, Goulermas JY, Turner P, Varga Z, Fongaro L, Fanghänel T, Mayer K (2015) Raman spectroscopy of uranium compounds and the use of multivariate analysis for visualization and classification. Forensic Sci Int 251:61–68. https://doi.org/10.1016/j.forsciint.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  17. Plaue J (2013) Forensic signatures of chemical process history in uranium oxides. University of Nevada, Las Vegas

    Google Scholar 

  18. Nuclear Fuel Cycle. Department of Energy. https://www.energy.gov/ne/nuclear-fuel-cycle. Accessed 09.01.2017

  19. Schwerdt IJ, Olsen A, Lusk R, Heffernan S, Klosterman M, Collins B, Martinson S, Kirkham T, McDonald LW (2018) Nuclear forensics investigation of morphological signatures in the thermal decomposition of uranyl peroxide. Talanta 176:284–292. https://doi.org/10.1016/j.talanta.2017.08.020

    Article  CAS  PubMed  Google Scholar 

  20. Schwantes JM, Marsden O, Pellegrini KL (2017) State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 4th collaborative materials exercise of the nuclear forensics International Technical Working Group (ITWG). J Radioanal Nucl Chem 311:1441–1452

    Article  CAS  Google Scholar 

  21. Schwartz DS (2016) Documentation of operational protocol for the use of MAMA software. LA-UR-16-20297

  22. Olsen AM, Richards B, Schwerdt I, Heffernan S, Lusk R, Smith B, Jurrus E, Ruggiero C, McDonald LW (2017) Quantifying morphological features of α-U3O8 with image analysis for nuclear forensics. Anal Chem 89(5):3177–3183. https://doi.org/10.1021/acs.analchem.6b05020

    Article  CAS  PubMed  Google Scholar 

  23. Ruggiero CE, Gashcen BK, Block JJ (2016) Walk through example procedures for MAMA. LA-UR-16-25095

  24. Ruggiero CE, Porter RB (2014) MAMA software features: quantified attributes. LA-UR-14-23579

  25. Kristo MJ, Williams R, Gaffney AM, Kayzar-Boggs TM, Schorzman KC, Lagerkvist P, Vesterlun A, Rameback H, Nelwamondo AN, Kotze D, Song K, Lim SH, Han S-H, Lee C-G, Okubo A, Maloubier D, Cardona D, Samuleev P, Dimayuga I, Varga Z, Wallenius M, Mayer K, Loi E, Keegan E, Harrison J, Thiruvoth S, Stanley FE, Spencer KJ, Tandon L (2018) The application of radiochronometry during the 4th collaborative materials exercise of the nuclear forensics International Technical Working Group (ITWG). J Radioanal Nucl Chem 315:425–434. https://doi.org/10.1007/s10967-017-5680-5

    Article  CAS  Google Scholar 

  26. Keegan E, Kristo M, Toole K, Kips R, Young E (2016) Nuclear forensics: scientific analysis supporting law enforcement and nuclear security investigations. (LLNL-JRNL-684102):12LLNL-JRNL-684102.

  27. Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113(2):884–900. https://doi.org/10.1021/cr300273f

    Article  CAS  PubMed  Google Scholar 

  28. Doyle JL, Schwartz D, Tandon L (2016) Nuclear forensics of a non-traditional sample: neptunium. MRS Adv 1(44):2999–3005. https://doi.org/10.1557/adv.2016.353

    Article  CAS  Google Scholar 

  29. Tamasi AL, Cash LJ, Mullen WT, Pugmire AL, Ross AR, Ruggiero CE, Scott BL, Wagner GL, Walensky JR, Wilkerson MP (2017) Morphology of U3O8 materials following storage under controlled conditions of temperature and relative humidity. J Radioanal Nucl Chem 311(1):35–42. https://doi.org/10.1007/s10967-016-4923-1

    Article  CAS  Google Scholar 

  30. Tamasi AL, Cash LJ, Tyler Mullen W, Ross AR, Ruggiero CE, Scott BL, Wagner GL, Walensky JR, Zerkle SA, Wilkerson MP (2016) Comparison of morphologies of a uranyl peroxide precursor and calcination products. J Radioanal Nucl Chem 309(2):827–832. https://doi.org/10.1007/s10967-016-4692-x

    Article  CAS  Google Scholar 

  31. Nuclear Forensics in Support of Investigations: Impementing Guide (2015) IAEA nuclear security series no. 2-G (Rev. 1)

  32. Davydov J, Dion H, LaMont S, Hutcheon I, Robel M (2016) Leveraging existing information for use in a National Nuclear Forensics Library (NNFL). J Radioanal Nucl Chem 307(3):2389–2395. https://doi.org/10.1007/s10967-015-4627-y

    Article  CAS  Google Scholar 

  33. Osborne JW, Costello AB (2004) Sample size and subject to item ratio in principal components analysis. Pract Assess Res Eval 9:11

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the technical and support staff of the various teams and groups at LANL whose work contributed to this publication. This work was supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office. Transformational and Applied Research Directorate and National Technical Nuclear Forensic Center, under competitively awarded contract IAA HSHQDC-13-X-B0004. The views and conclusions contained in this document are those of the authors and do not represent the official policies, either expressed or implied, of the U.S. Department of Homeland Security or the Federal Government. Government support of this work is neither an express or implied endorsement. Los Alamos National Laboratory is operated by Los Alamos National Security, L.L.C. for the National Nuclear Security Administration of the U.S. Department of Energy (Contract DE-AC52-06NA25396). This document is LA-UR-17-30603. This work has been authored by an employee of Triad National Security, LLC, operator of the Los Alamos National Laboratory under Contract No.89233218CNA000001 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this work for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce this work, or allow others to do so for United States Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lav Tandon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesiak, A.D., Stanley, F.E. & Tandon, L. Characterization of nuclear materials signatures using statistical analysis processing in conjunction with quantitative morphology: a preliminary study. J Radioanal Nucl Chem 328, 259–266 (2021). https://doi.org/10.1007/s10967-021-07640-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07640-z

Keywords

Navigation