Skip to main content
Log in

Uranium contamination removal from water by an orchid (Vanda tessellata) based biosorbent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The study reports biosorptive removal of uranium(VI) water contamination by a wild epiphytic orchid plant: Vanda tessellata. This orchid plant was chosen based on abundant availability and adsorption efficacy. In batch mode operation the maximum uranium(VI) adsorption capacity was found as 416 μg g−1 of dry biomass. The optimum pH for adsorption was neutral (7), and the equilibrium time was 15 min at 30 ± 5 °C temperature. The adsorbent properties were characterized by SEM, EDS, and FTIR techniques. The effects of various variables like pH, initial ion concentration, biosorbent dose, contact time, and temperature on the adsorption process were studied. The Langmuir isotherm showed better agreement (R2 = 0.987) to describe the adsorption process, and the adsorption process followed pseudo-second-order kinetics. The thermodynamic study showed the endothermic, and spontaneous nature of adsorption in a feasible manner. The adsorbent can be used for developing a remedial method for uranium contamination in the water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Keith S, Faroon O, Roney N, Scinicariello F, Wiber S, Lngerman L, Llados F, Plewak D, Wohlers D, Diamond G (2013) Toxicological profile for uranium. Agency for Toxic Substances and Disease Registry (US), Atlanta (GA)

  2. Kale A, Bandela N, Kulkarni J (2020) Assessment of chemo-radiological risk of naturally occurred uranium in groundwater from the Beed district, India. J Radioanal Nucl Chem 323:151–157. https://doi.org/10.1007/s10967-019-06849-3

    Article  CAS  Google Scholar 

  3. World Health Organization (2011) Guidelines for drinking water. World Health Organization, Geneva

    Google Scholar 

  4. AERB (Atomic Energy Regulatory Board) (2004) Directive for limit on uranium in drinking water, Mumbai, India

  5. Yadav AK, Sahoo SK, Mahapatra S, Kumar AV, Pandey G, Lenka P, Tripathi RM (2014) Concentrations of uranium in drinking water and cumulative, age-dependent radiation doses in four districts of Uttar Pradesh, India. Toxicol Environ Chem 96:192–200. https://doi.org/10.1080/02772248.2014.934247

    Article  CAS  Google Scholar 

  6. Tan Y, Le L, Zhang H, Ding D, Dai Z, Xue J, Liu J, Hu N, Wang Y (2018) Adsorption and recovery of U(VI) from actual acid radioactive wastewater with low uranium concentration using thioacetamide modified activated carbon from liquorice residue. J Radioanal Nucl Chem 317:811–824. https://doi.org/10.1007/s10967-018-5952-8

    Article  CAS  Google Scholar 

  7. Ahmed SH, Sharaby CM, El Gammal EM (2013) Uranium extraction from sulfuric acid medium using trioctylamine impregnated activated carbon. Hydrometallurgy 134–135:150–157. https://doi.org/10.1016/j.hydromet.2013.02.003

    Article  CAS  Google Scholar 

  8. Afsari M, Safdari J, Towfighi J, Mallah MH (2012) The adsorption characteristics of uranium hexafluoride onto activated carbon in vacuum conditions. Ann Nucl Energy 46:144–151. https://doi.org/10.1016/j.anucene.2012.03.031

    Article  CAS  Google Scholar 

  9. Bayramoglu G, Arica MY (2016) MCM-41 silica particles grafted with polyacrylonitrile: modification in to amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium. Microporous Mesoporous Mater 226:117–124. https://doi.org/10.1016/j.micromeso.2015.12.040

    Article  CAS  Google Scholar 

  10. Abubakar M, Tamin MN, Saleh MA, Uday MB, Ahmad N (2016) Preparation and characterization of a nigerian mesoporous clay-based membrane for uranium removal from underground water. Ceram Int 42:8212–8220. https://doi.org/10.1016/j.ceramint.2016.02.031

    Article  CAS  Google Scholar 

  11. Nekhunguni PM, Tavengwa NT, Tutu H (2017) Sorption of uranium(VI) onto hydrous ferric oxide-modified zeolite: Assessment of the effect of pH, contact time, temperature, selected cations and anions on sorbent interactions. J Environ Manag 204:571–582. https://doi.org/10.1016/j.jenvman.2017.09.034

    Article  CAS  Google Scholar 

  12. Shao L, Wang X, Ren Y, Wang S, Zhong J, Chu M, Tang H, Lue L, Xie D (2016) Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal. Chem Eng J 286:311–319. https://doi.org/10.1016/j.cej.2015.10.062

    Article  CAS  Google Scholar 

  13. Mahfouz MG, Galhoum AA, Gomaa NA, Abdel-rahem SS, Atiya AA, Vincent T, Guibal E (2015) Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: equilibrium and kinetic studies. Chem Eng J 262:198–209. https://doi.org/10.1016/j.cej.2014.09.061

    Article  CAS  Google Scholar 

  14. Wei J, Zhang X, Liu Q, Li Z, Liu L, Wang J (2014) Magnetic separation of uranium by CoFe2O4 hollow spheres. Chem Eng J 241:228–234. https://doi.org/10.1016/j.cej.2013.12.035

    Article  CAS  Google Scholar 

  15. Kryvoruchko AP, Yurlova LY, Atamanenko ID, Korinilovich BY (2004) Ultrafiltration removal of U(VI) from contaminated water. Desalination 162:229–236. https://doi.org/10.1016/S0011-9164(04)00046-3

    Article  CAS  Google Scholar 

  16. Zhang L, Zhang X, Lu Q, Wu X, Jiang T, Mi L, Peng Y (2019) Adsorption of U(VI) ions from aqueous solution using nanogoethite powder. Adsorpt Sci Technol 37:113–126. https://doi.org/10.1177/0263617418816202

    Article  CAS  Google Scholar 

  17. Nilchi A, Shariati Dehaghan T, Rasouli Garmarodi S (2013) Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination 321:67–71. https://doi.org/10.1016/j.desal.2012.06.022

    Article  CAS  Google Scholar 

  18. Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215–216:208–216. https://doi.org/10.1016/j.jhazmat.2012.02.054

    Article  CAS  PubMed  Google Scholar 

  19. Kong L, Zhu Y, Wang M, Li Z, Tan Z, Xu R, Tang H, Chang X, Xiong Y, Chen D (2016) Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe-SC. J Hazard Mater 320:435–441. https://doi.org/10.1016/j.jhazmat.2016.08.060

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2014) Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Appl Surf Sci 320:10–20. https://doi.org/10.1016/j.apsusc.2014.08.182

    Article  CAS  Google Scholar 

  21. Kar AS, Kumar S, Tomar BS (2012) U(VI) sorption by silica: effect of complexing anions. Colloids Surf Physicochem Eng Asp 395:240–247. https://doi.org/10.1016/j.colsurfa.2011.12.038

    Article  CAS  Google Scholar 

  22. Gao J-K, Hou L-A, Zhang G-H, Gu P (2015) Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution. J Hazard Mater 286:325–333. https://doi.org/10.1016/j.jhazmat.2014.12.061

    Article  CAS  PubMed  Google Scholar 

  23. Vivero-Escoto JL, Carboni M, Abney CW, DeKrafft KE, Lin W (2013) Organo-functionalized mesoporous silicas for efficient uranium extraction. Microporous Mesoporous Mater 180:22–31. https://doi.org/10.1016/j.micromeso.2013.05.030

    Article  CAS  Google Scholar 

  24. Ivanova B, Spiteller M (2014) Adsorption of uranium composites onto saltrock oxides—experimental and theoretical study. J Environ Radioact 135:75–83. https://doi.org/10.1016/j.jenvrad.2014.03.019

    Article  CAS  PubMed  Google Scholar 

  25. Khani MH, Keshtkar AR, Ghannadi M, Pahlavanzadeh H (2008) Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae. J Hazard Mater 150:612–618. https://doi.org/10.1016/j.jhazmat.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  26. Bajwa BS, Kumar S, Singh S, Sahoo SK, Tripathi RM (2017) Uranium and other heavy toxic elements distribution in the drinking water samples of SW-Punjab, India. J Radiat Res Appl Sci 10:13–19. https://doi.org/10.1016/j.jrras.2015.01.002

    Article  CAS  Google Scholar 

  27. Saini K, Bajwa BS (2016) Uranium distribution study in the drinking water samples of SW Punjab, India. Adv Appl Sci Res 7(2):103–108

  28. Narang S, Kumar D, Kumar A (2018) Health-related analysis of uranium in Fazilka district, Punjab, India. Curr Sci 115:2079

    Article  CAS  Google Scholar 

  29. Nagaiah N, Mathews G, Balakrishna KK, Ranjana AM, Naregundi K (2013) Influence of physico-chemical parameters on the distribution of uranium in the ground water of Bangalore, India. Radiat Prot Environ 36:175–180

    Article  Google Scholar 

  30. Rani A, Mehra R, Duggal V, Balaram V (2013) Analysis of uranium concentration in drinking water samples using ICPMS. Health Phys 104:251–255. https://doi.org/10.1097/HP.0b013e318279ba05

    Article  CAS  PubMed  Google Scholar 

  31. Gascoyne M (1989) High levels of uranium and radium in groundwaters at Canada’s Underground Research Laboratory, Lac du Bonnet, Manitoba, Canada. Appl Geochem 4:577–591. https://doi.org/10.1016/0883-2927(89)90068-1

    Article  CAS  Google Scholar 

  32. Amakom C, Jibiri N (2010) Chemical and radiological risk assessment of uranium in borehole and well waters in the Odeda Area, Ogun State, Nigeria. Int J Phys Sci 5:1009–1014

    CAS  Google Scholar 

  33. Stalder E, Blanc A, Haldimann M, Dudler V (2012) Occurrence of uranium in Swiss drinking water. Chemosphere 86:672–679. https://doi.org/10.1016/j.chemosphere.2011.11.022

    Article  CAS  PubMed  Google Scholar 

  34. Vesterbacka P, Mäkeläinen I, Arvela H (2005) Natural radioactivity in drinking water in private wells in Finland. Radiat Prot Dosim 113:223–232. https://doi.org/10.1093/rpd/nch446

    Article  CAS  Google Scholar 

  35. Prakash B, Bais RT (2016) A Novel chemical compound from the leaf extract of Vanda tessellata (Roxb.) Hook. ex G. Don. World J Pharm Res 5:10

  36. Ricks AM, Gagliardi L, Duncan MA (2010) Infrared spectroscopy of extreme coordination: the carbonyls of U+ and UO2+. J Am Chem Soc 132:15905–15907. https://doi.org/10.1021/ja1077365

    Article  CAS  PubMed  Google Scholar 

  37. Sahu C, Khan F, Pandey PK, Pandey M (2017) Biosorptive removal of toxic contaminant lead from wastewater. Asian J Chem 29:650–656

    Article  CAS  Google Scholar 

  38. Sahu C, Khan F, Pandey PK, Pandey M (2017) Proficient removal of As (III) from water using orchid plant (Vanda sp.) as biosorbent. Asian J Chem 29:1790–1796

  39. Gardiner LM, Kocyan A, Motes M, Robert DL, Emerson BC (2013) Molecular phylogenetics of Vanda and related genera (Orchidaceae): Molecular Phylogenetics of Vanda. Bot J Linn Soc 173:549–572. https://doi.org/10.1111/boj.12102

    Article  Google Scholar 

  40. Sahu SK, Maity S, Bhangare RC, Pandit GG, Sharma DN (2014) Determination of uranium in ground water using different analytical technique, vol 34. Bhabha Atomic Research Centre, Mumbai

  41. Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y, Li S (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450. https://doi.org/10.1016/j.jhazmat.2011.03.066

    Article  CAS  PubMed  Google Scholar 

  42. Coates J (2006) Interpretation of infrared spectra, a practical approach. Encycl Anal Chem Appl Theory Instrum 1–23

  43. Wang J, Zhuang S (2019) Extraction and adsorption of U(VI) from aqueous solution using affinity ligand-based technologies: an overview. Rev Environ Sci Biotechnol 18(3):437–452

  44. Wang X, Xia L, Tan K, Zheng W (2012) Studies on adsorption of uranium (VI) from aqueous solution by wheat straw. Environ Prog Sustain Energy 31:566–576

    Article  CAS  Google Scholar 

  45. Yusan SD, Erenturk SA (2011) Sorption behaviors of uranium (VI) ions on α-FeOOH. Desalination 269:58–66

    Article  CAS  Google Scholar 

  46. Xiao-teng Z, Dong-mei J, Yi-qun X, Jun-chang C, Shuai H, Liang-shu X (2019) Adsorption of uranium(VI) from aqueous solution by modified rice stem. J Chem 2019:1–10. https://doi.org/10.1155/2019/6409504

    Article  CAS  Google Scholar 

  47. Yu J, Wang J, Jiang Y (2017) Removal of uranium from aqueous solution by alginate beads. Nucl Eng Technol 49:534–540. https://doi.org/10.1016/j.net.2016.09.004

    Article  Google Scholar 

  48. Rong L, Zeming S, Yun H, Kailiang Z, Junji Z, Xinyu W, Ke C, Lvhang Y (2019) Uranium sorption onto mullite: characteristics of isotherms, kinetics and thermodynamics. J Earth Syst Sci 128:176

    Article  Google Scholar 

  49. Saha R, Das S, Banerjee A, Sahana A, Sudarsan M, Slawin AMZ, Li Y, Das D (2010) pH dependent separation of uranium by chelation chromatography using pyridine 2,6-dimethanol as a chelator: single crystal X-ray structural confirmation of the chelated uranium complex. J Hazard Mater 181:154–160. https://doi.org/10.1016/j.jhazmat.2010.04.111

    Article  CAS  PubMed  Google Scholar 

  50. Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Wang L, Huang J, Li S (2010) Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176:119–124. https://doi.org/10.1016/j.jhazmat.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  51. Hazer O, Kartal Ş (2010) Use of amidoximated hydrogel for removal and recovery of U(VI) ion from water samples. Talanta 82:1974–1979. https://doi.org/10.1016/j.talanta.2010.08.023

    Article  CAS  PubMed  Google Scholar 

  52. Aytas S, Turkozu DA, Gok C (2011) Biosorption of uranium(VI) by bi-functionalized low cost biocomposite adsorbent. Desalination 280:354–362. https://doi.org/10.1016/j.desal.2011.07.023

    Article  CAS  Google Scholar 

  53. Sert Ş, Eral M (2010) Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2–MCM-41) using statistical design method. J Nucl Mater 406:285–292. https://doi.org/10.1016/j.jnucmat.2010.08.024

    Article  CAS  Google Scholar 

  54. Song Q, Ma L, Liu J, Bai C, Geng J, Wang H, Li B, Wang L, Li S (2012) Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J Colloid Interface Sci 386:291–299. https://doi.org/10.1016/j.jcis.2012.07.070

    Article  CAS  PubMed  Google Scholar 

  55. Yusan S, Akyil S (2008) Sorption of uranium(VI) from aqueous solutions by akaganeite. J Hazard Mater 160:388–395. https://doi.org/10.1016/j.jhazmat.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  56. Kushwaha S, Sudhakar PP (2013) Sorption of uranium from aqueous solutions using palm-shell-based adsorbents: a kinetic and equilibrium study. J Environ Radioact 126:115–124

    Article  CAS  Google Scholar 

  57. Wang G, Wang X, Chai X, Liu J, Deng N (2010) Adsorption of uranium (VI) from aqueous solution on calcined and acid-activated kaolin. Appl Clay Sci 47:448–451. https://doi.org/10.1016/j.clay.2009.11.003

    Article  CAS  Google Scholar 

  58. APHA (1999) Standard methods for the examination of water and wastewater. In: Water environment federation american water works association, 23rd edition. American Public Health Association, Washington, DC

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Kant Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P., Pandey, M. & Pandey, P.K. Uranium contamination removal from water by an orchid (Vanda tessellata) based biosorbent. J Radioanal Nucl Chem 328, 89–101 (2021). https://doi.org/10.1007/s10967-021-07638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07638-7

Keywords

Navigation