Skip to main content
Log in

Age determination analysis of a single uranium particle for safeguards

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An analytical technique was developed to determine the age of uranium particles. After the chemical separation of uranium and thorium, the 230Th/234U ratio was measured using single-collector inductively coupled plasma mass spectrometry and a 233U-based reference material comprising a certain amount of 229Th as a progeny nuclide of 233U. The results allowed us to determine the purification age of two certified materials, i.e., U-850 and U-100, which was in good agreement with the reference purification age (61 y). Moreover, the age of a single U-850 particle was determined with a difference of − 28 to 2 years from the reference date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Donohue DL (1998) Strengthening IAEA safeguards through environmental sampling and analysis. J Alloys Compd 271–273:11–18

    Article  Google Scholar 

  2. Donohue DL (2002) Strengthened nuclear safeguards. Anal Chem 74:28A-35A

    Article  CAS  Google Scholar 

  3. Wallenius M, Morgenstern A, Apostolidis C, Mayer K (2002) Determination of the age of highly enriched uranium. Anal Bio Chem 374:379–384

    Article  CAS  Google Scholar 

  4. LaMont SP, Hall G (2005) Uranium age determination by measuring the 230Th/234U ratio. J Radioanal Nucl Chem 264:423–427

    Article  Google Scholar 

  5. Varga Z, Surányi G (2007) Production date determination of uranium-oxide materials by inductively coupled plasma mass spectrometry. Anal Chim Acta 599:16–23

    Article  CAS  Google Scholar 

  6. Williams RW, Gaffney AM (2011) 230Th–234U model ages of some uranium standard reference materials. In: Proceedings of Radiochim Acta 1:31–35 (Oak Ridge National Laboratory: DOE/K25 Archives)

  7. Pointurier F, Hubert A, Roger G (2013) A method for dating small amounts of uranium. J Radioanal Nucl Chem 296:593–598

    Article  CAS  Google Scholar 

  8. Varga Z, Mayer K, Bonamici CE, Hubert A, Hutcheon I, Kinman W, Kristo M, Pointurier F, Spencer K, Stanley F, Steiner R, Tandon L, Williams R (2015) Validation of reference materials for uranium radiochronometry in the frame of nuclear forensic investigations. Appl Radi Isot 102:81–86

    Article  CAS  Google Scholar 

  9. Gaffney AM, Hubert A, Kinman WS, Magara M, Okubo A, Pointurier F, Schorzman KC, Steiner RE, Williams RW (2016) Round-robin 230Th–234U age dating of bulk uranium for nuclear forensics. J Radioanal Nucl Chem 307:2055–2060

    Article  CAS  Google Scholar 

  10. Fauré AL, Dalger T (2017) Age dating of individual micrometer-sized uranium particles by secondary ion mass spectrometry: an additional fingerprint for nuclear safeguards purposes. Anal Chem 89:6663–6669

    Article  Google Scholar 

  11. Varga Z, Venchiarutti C, Nicholl A, Krajkó J, Jakopič R, Mayer K, Richter S, Aregbe Y (2016) IRMM-1000a and IRMM-1000b uranium reference materials certified for the production date. Part I: methodology, preparation and target characteristics. J Radioanal Nucl Chem 307:1077–1085

    Article  CAS  Google Scholar 

  12. Venchiarutti C, Varga Z, Richter S, Nicholl A, Krajko J, Jakopič R, Mayer K, Aregbe Y (2016) IRMM-1000a and IRMM-1000b: uranium reference materials certified for the production date based on the 230Th/234U radiochronometer. Part II: certification. J Radioanal Nucl Chem 308:105–111

    Article  CAS  Google Scholar 

  13. Wallenius M, Mayer K (2000) Age determination of plutonium material in nuclear forensics by thermal ionization mass spectrometry. Fresenius J Anal Chem 366:234–238

    Article  CAS  Google Scholar 

  14. Wallenius M, Tamborini G, Koch L (2001) The “Age” of plutonium particles. Radiochim Acta 89:55–58

    Article  CAS  Google Scholar 

  15. Chen Y, Chang ZY, Zhao YG, Zhang JL, Li JH, Shu FJ (2009) Studies on the age determination of trace plutonium. J Radioanal Nucl Chem 281:675–678

    Article  CAS  Google Scholar 

  16. Shinonaga T, Donohue D, Ciurapinski A, Klose D (2009) Age determination of single plutonium particles after chemical separation. Spectrochim Acta B 64:95–98

    Article  Google Scholar 

  17. Mayer K, Wallenius M, Varga Z (2013) Nuclear forensics Science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113:884–900

    Article  CAS  Google Scholar 

  18. Miyamoto Y, Esaka F, Suzuki D, Magara M (2013) Precies age determination of a single plutonium particle using inductively coupled plasma mass spectrometer. Radiochim Acta 101:745–748

    Article  CAS  Google Scholar 

  19. Esaka F, Suzuki D, Miyamoto Y, Magara M (2015) Plutonium age determination from 240Pu/236U ratios in individual particles by ICP-MS without prior chemical separation. Microchem J 118:69–72

    Article  CAS  Google Scholar 

  20. Miyamoto Y, Suzuki D, Esaka F, Magara M (2015) Accurate purification age determination of individual uranium-plutonium mixed particles. Anal Bioanal Chem 407:7165–7173

    Article  CAS  Google Scholar 

  21. Szakal C, Simons DS, Fassett JD, Fahey AJ (2019) Advances in age-dating of individual uranium particles by large geometry secondary ion mass spectrometry. Analyst 144:4219–4232

    Article  CAS  Google Scholar 

  22. Esaka F, Esaka KT, Lee CG, Magara M, Sakurai S, Usuda S, Watanabe K (2007) Particle isolation for analysis of uranium minor isotopes in individual particles by secondary ion mass spectrometry. Talanta 71:1011–1015

    Article  CAS  Google Scholar 

  23. Usuda S, Yasuda K, Kokubu YS, Esaka F, Lee CG, Magara M, Sakurai S, Watanabe K, Hirayama F, Fukuyama H, Esaka KT, Iguchi K, Miyamoto Y, Chai JY (2006) Challenge to ultra-trace analytical techniques of nuclear materials in environmental samples for safeguards at JAERI: methodologies for physical and chemical form estimation. Int J Environ Anal Chem 86:663–675

    Article  CAS  Google Scholar 

  24. Browne E, Tuli JK (2007) Nuclear data sheets for A = 234. Nucl Data Sheets 108:681–772

    Article  CAS  Google Scholar 

  25. Browne E, Tuli JK (2012) Nuclear data sheets for A = 230. Nucl Data Sheets 113:2113–2185

    Article  CAS  Google Scholar 

  26. Usuda S, Magara M, Esaka F, Yasuda K, Kokubu YS, Lee CG, Miyamoto Y, Suzuki D, Inagawa J, Sakurai S, Murata F (2010) QA/QC activities and estimation of uncertainty for ultra-trace analysis of uranium and plutonium in safeguards environmental samples. J Nucl Radiochem Sci 11:A5–A9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Nuclear Regulation Authority, Japan. The authors would like to thank Mr. T. Watanabe and Mr. D. Endo for the chemical treatments, Mr. T. Onodera and Mr. H. Matsuyama for the sample preparation, and Mr. Y. Takahashi for the ICP–MS measurements. The valuable comments of reviewers are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, D., Tomita, R., Tomita, J. et al. Age determination analysis of a single uranium particle for safeguards. J Radioanal Nucl Chem 328, 103–111 (2021). https://doi.org/10.1007/s10967-021-07626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07626-x

Keywords

Navigation