Skip to main content
Log in

Removal of thorium(IV) ions from aqueous solution by polyacrylamide-based monoliths: equilibrium, kinetic and thermodynamic studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, a series of macroporous polyacrylamide-based monoliths bearing negatively charged interaction sites were synthesized as adsorbents for effective removal of Th4+ from aqueous solutions. The effects of solution pH, contact time, monolith dosage, initial concentration, and temperature on adsorption process was studied. The Langmuir, Freundlich, and Dubinin–Raduskevich adsorption isotherms were applied to describe the adsorption data. The equilibrium data were best fitted with both Freundlich and Langmuir models. The experimental kinetic data were well described by the pseudo-second order kinetic. Thermodynamic studies revealed that the adsorption of Th4+ onto the synthesized monolith was an endothermic and spontaneous process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ismail LS, Khalili FI, Abu Orabi FM (2020) Thorium(IV) removal and recovery from aqueous solutions using modified silica nanoparticles with cysteine or methionine amino acids. Desalin Water Treat 196:1–16

    Google Scholar 

  2. Huang Y, Hu Y, Chen L, Yang T, Huang H, Shi R, Lu P, Zhong C (2018) Selective biosorption of thorium(IV) from aqueous solutions by ginkgo leaf. PLoS ONE 13(3):e0193659

    PubMed  PubMed Central  Google Scholar 

  3. Gado MA, Atia BM, Cheira MF, Abdou AA (2019) Thorium ions adsorption from aqueous solution by amino naphthol sulphonate coupled chitosan. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1683552

    Article  Google Scholar 

  4. Kütahyali C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396:251–256

    Google Scholar 

  5. Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination-an overview. Talanta 68:1047–1064

    CAS  PubMed  Google Scholar 

  6. Anirudhan TS, Rejeena SR (2011) Thorium(IV) removal and recovery from aqueous solutions using tannin-modified poly(glycidylmethacrylate)-grafted zirconium oxide densified cellulose. Ind Eng Chem Res 50(23):13288–13298

    CAS  Google Scholar 

  7. Anirudhan TS, Sreekumari SS, Jalajamony S (2013) An investigation into the adsorption of thorium(IV) from aqueous solutions by a carboxylate-functionalised graft copolymer derived from titanium dioxide-densified cellulose. J Environ Radioact 116:141–147

    CAS  PubMed  Google Scholar 

  8. Liu H, Deng S, Lei L, Feng Z, Qi C, Long W (2018) Removal of trace thorium(IV) from aqueous solutions using a pseudo-polyrotaxane. Radiochim Acta 106(5):373–381

    CAS  Google Scholar 

  9. Kaynar UH, Ayvacikli M, Hiçsönmez U, Kaynar SC (2015) Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: isotherms, kinetic and thermodynamic studies. J Environ Radioact 150:145–151

    CAS  PubMed  Google Scholar 

  10. Hu Y, Giret S, Meinusch R, Han J, Fontaine F-G, Kleitz F, Lariviere D (2019) Selective separation and preconcentration of Th(IV) using organo-functionalized, hierarchically porous silica monoliths. J Mater Chem A 7:289–302

    CAS  Google Scholar 

  11. Varala S, Kumari A, Dharanija B, Bhargava SK, Parthasarathy R, Satyavathi B (2016) Removal of thorium (IV) from aqueous solutions by deoiled karanja seed cake: optimization using Taguchi method, equilibrium, kinetic and thermodynamic studies. J Environ Chem Eng 4:405–417

    CAS  Google Scholar 

  12. NazalAlBayyari MKM, Khalili FI (2019) Salvadora Persica branches biomass adsorbent for removal of uranium(VI) and thorium(IV) from aqueous solution: kinetics and thermodynamics study. J Radioanal Nucl Chem 321:985–996

    Google Scholar 

  13. Kumar A, Ali M, Pandey BN (2013) Understanding the biological effects of thorium and developing efficient strategies for its decorporation and mitigation. BARC Newsl 335:55–60

    Google Scholar 

  14. Yan L, Qiaohui F, Wangsuo W (2011) Sorption of Th(IV) on goethite: effects of pH, ionic strength, FA and phosphate. J Radioanal Nucl Chem 289:865–871

    CAS  Google Scholar 

  15. Ince M, Ince OK (2017) An overview of adsorption technique for heavy metal removal from water/wastewater: a critical review. Int J Pure Appl Sci 3:10–19

    Google Scholar 

  16. Zeng G, He Y, Zhan Y, Zhang L, Pan Y, Zhang C, Yu Z (2016) Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J Hazard Mater 5:60–72

    Google Scholar 

  17. Panayotova T, Dimova-Todorova M, Dobrevsky I (2007) Purification and reuse of heavy metals containing wastewaters from electroplating plants. Desalination 206:135–140

    CAS  Google Scholar 

  18. Renu AM, Singh K (2017) Methodologies for removal of heavy metal ions from wastewater: an overview. Interdiscip Environ Rev 18(2):124–142

    Google Scholar 

  19. Joseph L, Jun B-M, Flora JRV, Park CM, Yoon Y (2019) Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere 229:142–159

    CAS  PubMed  Google Scholar 

  20. Singh NB, Nagpal G, Agrawal S, Rachna, (2018) Water purification by using adsorbents: a review. Environ Technol Innov 11:187–240

    Google Scholar 

  21. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    CAS  PubMed  Google Scholar 

  22. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    CAS  Google Scholar 

  23. Ahn CK, Park D, Woo SH, Park JM (2009) Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. J Hazard Mater 164:1130–1136

    CAS  PubMed  Google Scholar 

  24. Mahdavi S, Jalali M, Afkhami A (2013) Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chem Eng Commun 200:448–470

    CAS  Google Scholar 

  25. Amer TE, Abdella WM, Abdel Wahab GM, El-Sheikh EM (2013) A suggested alternative procedure for processing of monazite mineral concentrate. Int J Miner Process 125:106–111

    CAS  Google Scholar 

  26. Xie F, Zhang TA, Dreisinger D, Doyle F (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng 56:10–28

    CAS  Google Scholar 

  27. Huang H, Ding S-D, Su D, Liu N, Wang J, Tan M, Fei J (2014) High selective extraction for thorium(IV) with NTAamide in nitric acid solution: synthesis, solvent extraction and structure studies. Sep Purif Technol 138:65–70

    CAS  Google Scholar 

  28. Modenes AN, Espinoza-Quinones FR, Trigueros DEG, Lavarda FL, Colombo A, Mora ND (2011) Kinetic and equilibrium adsorption of Cu(II) and Cd(II) ions on Eichhornia crassipes in single and binary systems. Chem Eng J 168:44–51

    CAS  Google Scholar 

  29. Hamdaoui O, Naffrechoux E (2007) Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater 147:381–394

    CAS  PubMed  Google Scholar 

  30. Xiu T, Liu Z, Yang L, Wang Y (2019) Removal of thorium and uranium from aqueous solution by adsorption on hydrated manganese dioxide. J Radioanal Nucl Chem 321:671–681

    CAS  Google Scholar 

  31. Hongxia Z, Zheng D, Zuyi T (2006) Sorption of thorium(IV) ions on gibbsite: effects of contact time, pH, ionic strength, concentration, phosphate and fulvic acid. Colloids Surf A Physicochem Eng Asp 278:46–52

    Google Scholar 

  32. Khalili FI, Khalifa A, Al-Banna G (2017) Removal of uranium(VI) and thorium(IV) by insolubilized humic acid originated from Azraq soil in Jordan. J Radioanal Nucl Chem 311:1375–1392

    CAS  Google Scholar 

  33. Kumar VV, Kumar CR, Suresh A, Jayalakshmi S, Mudali UK, Sivaraman N (2018) Evaluation of polybenzimidazole-based polymers for the removal of uranium, thorium and palladium from aqueous medium. R Soc Open Sci 5:171701–171716

    PubMed  PubMed Central  Google Scholar 

  34. Guo Z-J, Yu X-M, Guo F-H, Tao Z-Y (2005) Th(IV) adsorption on alumina: Effects of contact time, pH, ionic strength and phosphate. J Colloid Interface Sci 288:14–20

    CAS  PubMed  Google Scholar 

  35. Zhijun G, Lijun N, Zuyi T (2005) Sorption of Th(IV) ions onto TiO2: effects of contact time, ionic strength, thorium concentration and phosphate. J Radioanal Nucl Chem 266:333–338

    Google Scholar 

  36. Tan X, Wang X, Chen C, Sun A (2007) Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles. Appl Radiat Isot 65:375–381

    CAS  PubMed  Google Scholar 

  37. Alaqarbeh M, Khalili FI, Kanoun O (2020) Manganese ferrite (MnFe2O4) as potential nanosorbent for adsorption of uranium(VI) and thorium(IV). J Radioanal Nucl Chem 323:515–537

    CAS  Google Scholar 

  38. Limousin G, Gaudet J-P, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275

    CAS  Google Scholar 

  39. Gado MA (2018) Sorption of thorium using magnetic graphene oxide polypyrrole composite synthesized from natural source. Sep Sci Technol 53:2016–2033

    CAS  Google Scholar 

  40. Ali O, Osman HH, Sayed SA, Shalabi MEH (2015) The removal of uranium and thorium from their aqueous solutions via glauconite. Desalin Water Treat 53:760–767

    CAS  Google Scholar 

  41. Khalili FI, Salameh NH, Shaybe MM (2013) Sorption of uranium(VI) and thorium(IV) by Jordanian bentonite. J Chem 2013:1–13

    Google Scholar 

  42. Xie S, Svec F, Frechet JMJ (1998) Porous polymer monoliths: preparation of sorbent materials with high-surface areas and controlled surface chemistry for high-throughput, online, solid-phase extraction of polar organic compounds. Chem Mater 10:4072–4078

    CAS  Google Scholar 

  43. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168

    CAS  PubMed  Google Scholar 

  44. Al-Massaedh AA, Pyell U (2014) Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part IV: investigation of the chromatographic efficiency dependent on the retention mode. J Chromatogr A 1349:80–89

    CAS  PubMed  Google Scholar 

  45. Samiey B, Cheng C-H, Wu J (2014) Organic–inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials 7:673–726

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Groarke RJ, Brabazon D (2016) Methacrylate polymer monoliths for separation applications. Materials 9:446–479

    PubMed Central  Google Scholar 

  47. Al-Massaedh AA, Schmidt M, Pyell U, Reinscheid UM (2016) Elucidation of the enantiodiscrimination properties of a nonracemic chiral alignment medium through gel-based capillary electrochromatography: separation of the mefloquine stereoisomers. ChemistryOpen 5:455–459

    CAS  PubMed  Google Scholar 

  48. Al-Massaedh AA, Pyell U (2016) Mixed-mode acrylamide-based continuous beds bearing tert-butyl groups for capillary electrochromatography synthesized via complexation of N-tert-butylacrylamide with a water-soluble cyclodextrin. Part I: retention properties. J Chromatogr A 1477:114–126

    CAS  PubMed  Google Scholar 

  49. Ab. Rahman SK, Yusof NA, Mohammad F, Abdullah AH, Idris A (2017) Ion imprinted polymer monoliths as adsorbent materials for the removal of Hg(II) from real-time aqueous samples. Curr Sci 113:2282–2291

    CAS  Google Scholar 

  50. Al-Massaedh AA, Pyell U (2014) Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part II. Characterization of the synthesized monoliths by inverse size exclusion chromatography and scanning electron microscopy. J Chromatogr A 1325:247–255

    CAS  Google Scholar 

  51. Neck V, Müller R, Bouby M, Altmaier M, Rothe J, Denecke MA, Kim JI (2002) Solubility of amorphous Th(IV) hydroxide-application of LIBD to determine the solubility product and EXAFS for aqueous speciation. Radiochim Acta 90:485–494

    CAS  Google Scholar 

  52. Igberase E, Osifo P, Ofomaja A (2017) The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: equilibrium, kinetic, thermodynamic, and desorption studies. Int J Anal Chem 2017:6150209

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zaitoun MA, Al-Anber MA, Al Momani IF (2020) Sorption and removal aqueous iron(III) ion by tris (2-aminoethyl)amine moiety functionalized silica gel. Int J Environ Anal Chem 100(13):1446–1467

    CAS  Google Scholar 

  54. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    CAS  Google Scholar 

  55. Robati D (2013) Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J Nanostruct Chem 3(1):1–6

    Google Scholar 

  56. Ramesh ST, Rameshbabu N, Gandhimathi R, Nidheesh PV, Srikanth Kumar M (2012) Kinetics and equilibrium studies for the removal of heavy metals in both single and binary systems using hydroxyapatite. Appl Water Sci 2:187–197

    CAS  Google Scholar 

  57. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:3039817

    Google Scholar 

  58. Giles CH, Smith D (1974) A general treatment and classification of the solute adsorption isotherm. J Colloid Interface Sci 47(3):755–765

    CAS  Google Scholar 

  59. Liu S (2015) Cooperative adsorption on solid surfaces. J Colloid Interface Sci 450:224–238

    CAS  PubMed  Google Scholar 

  60. Salameh SIY, Khalili FI, Al-Dujaili AH (2017) Removal of U(VI) and Th(IV) from aqueous solutions by organically modified diatomaceous earth: evaluation of equilibrium, kinetic and thermodynamic data. Int J Miner Process 168(10):9–18

    CAS  Google Scholar 

  61. Jaynes WF, Boyd SA (1991) Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clays Clay Miner 39:428–436

    CAS  Google Scholar 

  62. Alkaram UF, Mukhlis AA, Al-Dujaili AH (2009) The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J Hazard Mater 169:324–332

    CAS  PubMed  Google Scholar 

  63. Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigm 77:16–23

    CAS  Google Scholar 

  64. Xu D, Tan XL, Chen CL, Wang XK (2008) Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Appl Clay Sci 41:37–46

    Google Scholar 

Download references

Acknowledgements

Authors thank Jordan University (Amman, Jordan) and Al al-Bayt University (Mafraq, Jordan) for providing the required facilities to perform this work. We also would like to thank the deanship of scientific research at the University of Jordan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayat Allah Al-Massaedh.

Ethics declarations

Conflict of interest

A.A. Al-Massaedh and F. I. Khalili declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Massaedh, A.A., Khalili, F.I. Removal of thorium(IV) ions from aqueous solution by polyacrylamide-based monoliths: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 327, 1201–1217 (2021). https://doi.org/10.1007/s10967-021-07614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07614-1

Keywords

Navigation