Skip to main content
Log in

A dual‐scintillator time‐of‐flight spectrometer for secondary fast neutrons in proton radiotherapy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to measure the energy spectra of secondary neutrons in proton and heavy-ion radiotherapy, a neutron spectrometer has been developed. In this paper, two organic scintillation detectors combined with photomultiplier tubes were used to form a dual-scintillator time-of-flight spectrometer. The performance of this spectrometer was tested with a DT neutron generator, and the detection efficiency of each detector as well as the spectrometer were simulated by Geant4 toolkit. It’s shown that the time resolution of the spectrometer is 0.797 ns with an energy resolution of 26.4% for neutrons with an energy of 14 MeV at a flight distances over 150 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 82(1):383–425

    Article  Google Scholar 

  2. Durante M, Paganetti H (2016) Nuclear physics in particle therapy: a review. Rep Prog Phys 79(9):096702

    Article  Google Scholar 

  3. Thomas DJ, Alevra AV (2002) Bonner sphere spectrometers—a critical review. Nucl Instrum Methods Phys Res Sect A 476(1):12–20

    Article  CAS  Google Scholar 

  4. Bramblett RL, Ewing RI, Bonner TW (1960) A new type of neutron spectrometer. Nucl Instrum Methods 9(1):1–12

    Article  Google Scholar 

  5. Thomas DJ (2010) Neutron spectrometry. Radiat Meas 45(10):1178–1185

    Article  CAS  Google Scholar 

  6. Liao C, Yang R (2012) Study on neutron energy spectrum correction and pulse shape discrimination with a boron-loaded scintillator. In: Nuclear science symposium and medical imaging conference. IEEE, pp 141–145

  7. Glebov V, Meyerhofer D (2006) Development of nuclear diagnostics for the national ignition facility (invited). Rev sci Instrum 77(10E715):1–7

    Google Scholar 

  8. Birattari C, Esposito A, Ferrari A et al (1993) Calibration of the neutron rem counter LINUS in the energy range from thermal to 19 MeV. Nucl Instrum Methods Phys Res Sect A 324(1–2):232–238

    Article  Google Scholar 

  9. Birattari C, Esposito A, Ferrari A et al (1998) The extended range neutron rem counter LINUS: overview and latest developments. Radiat Prot Dosim 76(3):135–148

    Article  CAS  Google Scholar 

  10. Sadaaki Shiraishi T, Takata H, Tanaka Y et al (2020) A study on remotely-changeable moderators in Bonner sphere spectrometer for irradiation-field characterization in boron neutron capture therapy. Appl Radiat Isot 163:109213

    Article  Google Scholar 

  11. Clarke S, Pryser E et al (2016) A scintillator-based approach to monitor secondary neutron production during proton therapy. Med Phys 43(11):5915–5924

    Article  CAS  Google Scholar 

  12. Iwanowska J, Swiderski L, Krakowski T et al (2015) The time-of-flight method for characterizing the neutron response of liquid organic scintillators. Nucl Instrum Methods Phys Res Sect A 781:44–49

    Article  CAS  Google Scholar 

  13. Shigyo N, Iwamoto Y, Satoh D et al (2000) Improvement of energy resolution in time-of-flight method for high energy neutron measurement. In: Nuclear science symposium conference record, vol 6. IEEE, pp 215–218

  14. Forman L, Vanier PE, Welsh K (2004) Fast neutron source detection at long distances using double-scatter spectrometry. Proc Spie 5198:217–224

    Article  CAS  Google Scholar 

  15. Satoh D, Moriguchi D, Kajimoto T et al (2011) Measurement of neutron-production double-differential cross-sections on carbon bombarded with 290-MeV/nucleon carbon and oxygen ions. Nucl Instrum Methods Phys Res Sect A 644(1):59–67

    Article  CAS  Google Scholar 

  16. Fast Timing Plastic Scintillator (2016) EJ-228, EJ-230, Eljen technology[EB/OL]. https://eljentechnology.com/images/products/data_sheets/EJ-228_EJ-230.pdf

  17. Neutron/Gamma PSD Liquid Scintillator (2018) EJ-301, EJ-309, Eljen technology[EB/OL]. https://eljentechnology.com/images/products/data_sheets/EJ-301_EJ-309.pdf

  18. 730 Digitizer Family[EB/OL] (2020). https://www.caen.it/subfamilies/730-digitizer-family/

  19. Chikkur GC, Umakantha N (1973) A new method of determining the compton edge in liquid scintillators. Nucl Instrum Methods 107(1):201–202

    Article  CAS  Google Scholar 

  20. Schmidt D, Asselineau B et al (2002) Characterization of liquid scintillation detectors. Nucl Instrum Methods Phys Res Sect A 476(1–2):186–189

    Article  CAS  Google Scholar 

  21. Knoll GF (2010) Radiation detection and measurement, 4th edn. Wiley, Hoboken, pp 342–324

    Google Scholar 

  22. Liao C, Yang et al (2014) n/γ Pulse shape discrimination comparison of EJ301 and EJ339A liquid scintillation detectors. Ann Nucl Energy 69:57–61

    Article  CAS  Google Scholar 

  23. Agostinelli S et al (2003) Geant4 a simulation toolkit. Nucl Instrum Methods Phys Res Sect A 506:250–303

    Article  CAS  Google Scholar 

  24. Graham J, Landsberger S, Ferreira PJ et al (2012) Neutron flux characterization techniques for radiation effects studies. J Radioanal Nucl Chem 291(2):503–507

    Article  CAS  Google Scholar 

  25. Chiesa D, Nastasi M, Cazzaniga C et al (2018) Measurement of the neutron flux at spallation sources using multi-foil activation. Nucl Instrum Methods Phys Res Sect A 902:14–24

    Article  CAS  Google Scholar 

  26. Gunzert-Marx K, Iwase H, Schardt D et al (2008) Secondary beam fragments produced by 200MeVu1 12C ions in water and their dose contributions in carbon ion radiotherapy. New J Phys 10(7):37–66

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grants (11705123) and the Project of the State Key Laboratory of Radiation Medicine and Protection, Soochow University (GZN1201801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Qu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Jia, W., Hei, D. et al. A dual‐scintillator time‐of‐flight spectrometer for secondary fast neutrons in proton radiotherapy. J Radioanal Nucl Chem 327, 1317–1323 (2021). https://doi.org/10.1007/s10967-021-07603-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07603-4

Keywords

Navigation