Skip to main content
Log in

Study of dynamic adsorption and desorption kinetics of cesium, strontium, cobalt radionuclides on granular phosphate adsorbent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Dynamic adsorption and desorption kinetics of 137Cs, 85Sr, 60Co radionuclides on granulated phosphate adsorbent based of phosphatized dolomite were studied. The influence of the model solutions composition (distilled water, 0.1 M NaCl, 0.05 M CaCl2) on the efficiency of dynamic adsorption was established. Experimental data on the distribution of 137Cs, 85Sr, 60Co radionuclides over the depth of the adsorbent layer were obtained. The mechanism of radionuclides adsorption was proposed. The regularities of desorption kinetics depending on pH (4.0, 7.0, 10.0) and the composition of leaching solutions (distilled water and model sea solution) were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdel Rahman RO, Ibrahium HA, Hung YT (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565. https://doi.org/10.3390/w3020551

    Article  Google Scholar 

  2. Hossain F (2020) Natural and anthropogenic radionuclides in water and wastewater: sources, treatments and recoveries. J Environ Radioact 225:106423. https://doi.org/10.1016/j.jenvrad.2020.106423

    Article  CAS  PubMed  Google Scholar 

  3. Vellingiri K, Kim K-H, Pournara A, Deep A (2018) Towards high-efficiency sorptive capture of radionuclides in solution and gas. Prog Mater Sci 94:1–67. https://doi.org/10.1016/j.pmatsci.2018.01.002

    Article  CAS  Google Scholar 

  4. Huang G, Jiang L, Shao L, Yang X, Huang J (2020) In situ electrochemical synthesis of Zn–Al layered double hydroxides for removal of strontium. Colloids Surf A 597:124785. https://doi.org/10.1016/j.colsurfa.2020.124785

    Article  CAS  Google Scholar 

  5. Gu P, Zhang S, Li X, Wang X, Wen T, Jehan R, Alsaedi A, Hayat T, Wang X (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505. https://doi.org/10.1016/j.envpol.2018.04.136

    Article  CAS  PubMed  Google Scholar 

  6. Huber FM, Heck S, Truche L, Bouby M, Brendlé J, Hoess P, Schäfer T (2015) Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles. Geochim Cosmochim Acta 148:426–441. https://doi.org/10.1016/j.gca.2014.10.010

    Article  CAS  Google Scholar 

  7. Zhu R, Chen Q, Zhou Q, Xi Y, Zhu J, He H (2016) Adsorbents based on montmorillonite for contaminant removal from water: a review. Appl Clay Sci 123:239–258. https://doi.org/10.1016/j.clay.2015.12.024

    Article  CAS  Google Scholar 

  8. Claverie M, Garcia J, Prevost T, Brendlé J, Limousy L (2019) Inorganic and hybrid (organic–inorganic) lamellar materials for heavy metals and radionuclides capture in energy wastes management–—a review. Mater 12:1399. https://doi.org/10.3390/ma12091399

    Article  CAS  Google Scholar 

  9. Oleksiienko O, Sillanpää M (2020) Sol–gel synthesized titanosilicates for the uptake of radionuclides. In: Sillanpää M (ed) Advanced water treatment: adsorption. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-819216-0.00005-9

    Chapter  Google Scholar 

  10. Ivanets AI, Shashkova IL, Drozdova NV, Davydov DY, Radkevich AV (2014) Recovery of cesium ions from aqueous solutions with composite sorbents based on tripolite and copper (II) and nickel (II) ferrocyanides. Radiochemistry 56:524–528. https://doi.org/10.1134/S1066362214050129

    Article  CAS  Google Scholar 

  11. Grandjean A, Barré Y, Hertz A, Fremy V, Mascarade J, Louradour E, Prevost T (2020) Comparing hexacyanoferrate loaded onto silica, silicotitanate and chabazite sorbents for Cs extraction with a continuous-flow fixed-bed setup: methods and pitfalls. Process Saf Environ Prot 134:371–380. https://doi.org/10.1016/j.psep.2019.12.024

    Article  CAS  Google Scholar 

  12. Thomson BM, Smith CL, Busch RD, Siegel MD, Baldwin C (2003) Removal of metals and radionuclides using apatite and other natural sorbents. J Environ Eng 129:492–499. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:6(492)

    Article  CAS  Google Scholar 

  13. Imam DM, Moussa SI, Attallah MF (2019) Sorption behavior of some radionuclides using prepared adsorbent of hydroxyapatite from biomass waste material. J Radioanal Nucl Chem 319:997–1012. https://doi.org/10.1007/s10967-018-06403-7

    Article  CAS  Google Scholar 

  14. Ivanets A, Milyutin V, Shashkova I, Kitikova N, Nekrasova N, Radkevich A (2020) Sorption of stable and radioactive Cs(I), Sr(II), Co(II) ions on Ti–Ca–Mg phosphates. J Radioanal Nucl Chem 324:1115–1123. https://doi.org/10.1007/s10967-020-07140-6

    Article  CAS  Google Scholar 

  15. Ivanets AI, Kitikova NV, Shashkova IL, Oleksiienko OV, Levchuk I, Sillanpää M (2016) Using of phosphatized dolomite for treatment of real mine water from metal ions. J. Water Process Eng 9:246–253. https://doi.org/10.1016/j.jwpe.2016.01.005

    Article  Google Scholar 

  16. Shashkova IL, Ivanets AI, Kitikova NV, Sillanpää M (2017) Effect of phase composition on sorption behavior of Ca–Mg phosphates towards Sr(II) ions in aqueous solution. J Taiwan Inst Chem Eng 80:787–796. https://doi.org/10.1016/j.jtice.2017.09.027

    Article  CAS  Google Scholar 

  17. Kitikova NV, Ivanets AI, Shashkova IL, Radkevich AV, Shemet LV, Kul’bitskaya LV, Sillanpää M (2017) Batch study of 85Sr adsorption from synthetic seawater solutions using phosphate sorbents. J Radioanal Nucl Chem 314:2437–2447. https://doi.org/10.1007/s10967-017-5592-4

    Article  CAS  Google Scholar 

  18. Maslova M, Mudruk N, Ivanets A, Shashkova I, Kitikova N (2020) A novel sorbent based on Ti–Ca–Mg phosphates: synthesis, characterization and sorption properties. Environ Sci Pollut Res 27:3933–3949. https://doi.org/10.1007/s11356-019-06949-3

    Article  CAS  Google Scholar 

  19. Ibrahim M, Labaki M, Giraudon J-M, Lamonier J-F (2019) Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review. J Hazard Mater 383:121139. https://doi.org/10.1016/j.jhazmat.2019.121139

    Article  CAS  PubMed  Google Scholar 

  20. Jelić I, Šljivić-Ivanović M, Dimović S, Antonijević D, Jović M, Mirković M, Smičiklas I (2018) The applicability of construction and demolition waste components for radionuclide sorption. J Clean Prod 171:322–332. https://doi.org/10.1016/j.jclepro.2017.09.220

    Article  CAS  Google Scholar 

  21. International Atomic Energy Agency (2011) Disposal of radioactive waste, safety standards series No. SSR-5. IAEA, Vienna

    Google Scholar 

  22. Ciffroy P, Garnier J-M, Pham MK (2001) Kinetics of the adsorption and desorption of radionuclides of Co, Mn, Cs, Fe, Ag and Cd in freshwater systems: experimental and modelling approaches. J Environ Radioact 55:71–91

    Article  CAS  Google Scholar 

  23. Pérez FF, Sweeck L, Bauwens W, Van Hees M, Elskens M (2015) Adsorption and desorption kinetics of 60Co and 137Cs in fresh water rivers. J Environ Radioact 149:81–89. https://doi.org/10.1016/j.jenvrad.2015.07.010

    Article  CAS  Google Scholar 

  24. Rumynin VG, Sindalovskiy LN, Konosavsky PK, Mironova AV, Zakharova EV, Kaimin EP, Pankina EB, Zubkov AA (2005) Review of the studies of radionuclide adsorption/desorption with application to radioactive waste disposal sites in the Russian Federation. Dev Water Sci 52:271–311. https://doi.org/10.1016/S0167-5648(05)52022-7

    Article  CAS  Google Scholar 

  25. Ivanets AI, Kitikova NV, Shashkova IL, Matrunchik YV, Kul’bitskaya LV, Sillanpaa M (2016) Non-acidic synthesis of phosphatized dolomite and its sorption behaviour towards Pb2+, Zn2+, Cu2+, Cd2+, Ni2+, Sr2+ and Co2+ ions in multicomponent aqueous solution. Environ Technol Innov 6:152–164. https://doi.org/10.1016/j.eti.2016.09.001

    Article  Google Scholar 

  26. Rat’ko AI, Ivanets AI, Kulak AI, Morozov EA, Sakhar IO (2011) Thermal decomposition of natural dolomite. Inorg Mater 47:1372–1377. https://doi.org/10.1134/S0020168511120156

    Article  CAS  Google Scholar 

  27. Ivanets AI, Kitikova NV, Shashkova IL, Radkevich AV, Shemet LV, Sillanpää M (2018) Effective removal of 60Co from high-salinity water by Ca–Mg phosphate sorbents. J Radioanal Nucl Chem 318(3):2341–2347. https://doi.org/10.1007/s10967-018-6291-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Ivanets.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanets, A., Radkevich, A., Shashkova, I. et al. Study of dynamic adsorption and desorption kinetics of cesium, strontium, cobalt radionuclides on granular phosphate adsorbent. J Radioanal Nucl Chem 327, 1291–1298 (2021). https://doi.org/10.1007/s10967-020-07584-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07584-w

Keywords

Navigation