Skip to main content
Log in

Ionic liquid-multi-walled carbon nanotubes modified screen-printed electrodes for sensitive electrochemical sensing of uranium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Here, two screen-printed electrodes modified with multi-walled carbon nanotubes alone (electrode III) or along with a triazole-based ionic liquid (electrode VII) were developed for sensitive uranium(VI) determination. The electrodes exhibited calibration slopes of 25.10 ± 1.35 and 29.93 ± 0.88 mV decade−1 over the concentration ranges of 1.0 × 10–5–1.0 × 10–1 and 4.7 × 10–7–1.0 × 10–1 mol L−1 for electrodes III and VII, respectively. The electrodes showed fast response times with a service life exceeding 5 months. The electrodes revealed good thermal stability and fairly high uranium(VI) selectivity over many cations and anions. The electrodes were successfully employed for sensitive detection of uranium(VI) in different water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie Y, Chen C, Ren X, Wang X, Wang H, Wang X (2019) Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog Mater Sci 103:180–234

    CAS  Google Scholar 

  2. Tosheva Z, Stoyanova K, Nikolchev L (2004) Comparison of different methods for uranium determination in water. J Environ Radioact 72:47–55

    CAS  Google Scholar 

  3. Tuovinen HP, Vesterbacka D, Pohjolainen E, Read D, Solatie D, Lehtoa J (2015) A comparison of analytical methods for determining uranium and thorium in ores and mill tailings. J Geochem Explor 148:174–180

    CAS  Google Scholar 

  4. Mimendia A, Gutiérrez JM, Leija L, Hernández PR, Favari L, Muñoz R, Valle M (2010) A review of the use of the potentiometric electronic tongue in the monitoring of environmental systems. Environ Modell Softw 25:1023–1030

    Google Scholar 

  5. Wu X, Huang Q, Mao Y, Wang X, Wang Y, Hu Q, Wang H, Wang X (2019) Sensors for determination of uranium: a review. Trends Anal Chem 118:89–111

    CAS  Google Scholar 

  6. Cuartero M, Crespo GA (2018) All-solid-state potentiometric sensors: a new wave for in situ aquatic research. Curr Opin Electrochem 10:98–106

    CAS  Google Scholar 

  7. Koncki R, Tymecki L, Zwierkowska E, Glab S (2000) Screen-printed copper ion-selective electrodes. Fresenius J Anal Chem 367:393–395

    CAS  PubMed  Google Scholar 

  8. Tymecki L, Glab S, Koncki R (2006) Miniaturized, planar ion-selective electrodes fabricated by means of thick-film technology. Sensors 6:390–396

    CAS  Google Scholar 

  9. Li M, Li Y, Li D, Long Y (2012) Recent developments and applications of screen-printed electrodes in environmental assays-a review. Anal Chim Acta 734:31–44

    CAS  PubMed  Google Scholar 

  10. Hayat A, Marty JL (2014) Disposable screen printed electrochemical sensors: tools for environmental monitoring. Sensors 14:10432–10453

    CAS  PubMed  Google Scholar 

  11. Couto RA, Lima JL, Quinaz MB (2016) Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 146:801–814

    CAS  PubMed  Google Scholar 

  12. Pooja D, Kumar P, Singh P, Patil S (2020) Sensors in water pollutants monitoring: role of material. Springer Nature, Berlin

    Google Scholar 

  13. Arduini F, Micheli L, Moscone D, Palleschi G, Piermarini S, Ricci F, Volpe G (2016) Electrochemical biosensors based on nanomodified screen-printed electrodes: recent applications in clinical analysis. Trends Anal Chem 79:114–126

    CAS  Google Scholar 

  14. Liu X, Yao Y, Ying Y, Ping J (2019) Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. Trends Anal Chem 115:187–202

    CAS  Google Scholar 

  15. Ahammad AJS, Lee J, Rahman MA (2009) Electrochemical sensors based on carbon nanotubes. Sensors 9:2289–2319

    CAS  Google Scholar 

  16. Merkoçi A, Pumera M, Llopis X, Pérez B, Valle M, Alegret S (2005) New materials for electrochemical sensing VI: carbon nanotubes. Trends Anal Chem 24:826–838

    Google Scholar 

  17. Ghaedi M, Naderi S, Montazerozohori M, Taghizadeh F, Asghari A (2017) Chemically modified multiwalled carbon nanotube carbon paste electrode for copper determination. Arab J Chem 10:S2934–S2943

    CAS  Google Scholar 

  18. Salavagione HJ, Díez-Pascual AM, Lázaro E, Vera S, Gómez-Fatoua MA (2014) Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer. J Mater Chem A 2:14289–14328

    CAS  Google Scholar 

  19. Shvedene NV, Abashev MN, Arakelyan SA, Otkidach KN, Tomilova LG, Pletnev IV (2019) Highly selective solid-state sensor for iodide based on the combined use of platinum (IV) phthalocyanine and solidified pyridinium ionic liquid. J Solid State Electr 23:543–552

    CAS  Google Scholar 

  20. Mendecki L, Chen X, Callan N, Thompson DF, Schazmann B, Granados-Focil S, Radu A (2016) Simple, robust, and plasticizer-free iodide-selective sensor based on copolymerized triazole-based ionic liquid. Anal Chem 88:4311–4317

    CAS  PubMed  Google Scholar 

  21. Koel M (2005) Ionic liquids in chemical analysis. Crit Rev Anal Chem 35:177–192

    CAS  Google Scholar 

  22. Silvester DS (2011) Recent advances in the use of ionic liquids for electrochemical sensing. Analyst 136:4871–4882

    CAS  PubMed  Google Scholar 

  23. Chang J, Wei G, Zen J (2011) Screen-printed ionic liquid/preanodized carbon electrode: effective detection of dopamine in the presence of high concentration of ascorbic acid. Electrochem Commun 13:174–177

    CAS  Google Scholar 

  24. Ping J, Ru S, Fan K, Wu J, Ying Y (2010) Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide. Microchim Acta 171:117–123

    CAS  Google Scholar 

  25. Ganjali MR, Khoshsafar H, Faridbod F, Shirzadmehr A, Javanbakht M, Norouzia P (2009) Room temperature ionic liquids (RTILs) and multiwalled carbon nanotubes (MWCNTs) as modifiers for improvement of carbon paste ion selective electrode response: a comparison study with PVC membrane. Electroanalysis 21:2175–2178

    CAS  Google Scholar 

  26. Shvedene NV, Chernyshov DV, Khrenova MG, Formanovsky AA, Baulin VE, Pletnev IV (2006) Ionic liquids plasticize and bring ion-sensing ability to polymer membranes of selective electrodes. Electroanalysis 18:1416–1421

    CAS  Google Scholar 

  27. Chaiyo S, Mehmeti E, Žagar K, Siangproh W, Chailapakul O, Kalcher K (2016) Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode. Anal Chim Acta 918:26–34

    CAS  PubMed  Google Scholar 

  28. Kunpatee K, Chamsai P, Mehmeti E, Stankovic DM, Ortner A, Kalcher K (2019) A highly sensitive fenobucarb electrochemical sensor based on graphene nanoribbons-ionic liquid-cobalt phthalocyanine composites modified on screen-printed carbon electrode coupled with a flow injection analysis. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2019.113630

    Article  Google Scholar 

  29. Niua X, Zhaoa H, Lan M (2011) Disposable screen-printed antimony film electrode modified with carbon nanotubes/ionic liquid for electrochemical stripping measurement. Electrochim Acta 56:9921–9925

    Google Scholar 

  30. Zhu X, Niu X, Zhao H, Lan M (2014) Doping ionic liquid into Prussian blue-multiwalled carbon nanotubes modified screen-printed electrode to enhance the nonenzymatic H2O2 sensing performance. Sens Actuators B Chem 195:274–280

    CAS  Google Scholar 

  31. Nagles E, García-Beltrán O, Calderón JA (2017) Evaluation of the usefulness of a novel electrochemical sensor in detecting uric acid and dopamine in the presence of ascorbic acid using a screen-printed carbon electrode modified with single walled carbon nanotubes and ionic liquids. Electrochim Acta 258:512–523

    CAS  Google Scholar 

  32. El-Tabei AS, Hegazy MA, Bedair AH, Sadeq MA (2014) Synthesis and inhibition effect of a novel tri-cationic surfactant on carbon steel corrosion in 0.5 M H2SO4 solution. J Surfact Deterg 17:3–352

    CAS  Google Scholar 

  33. Labena A, Hegazy MA, Horn H, Müller E (2015) The biocidal effect of a novel synthesized gemini surfactant on environmental sulfidogenic bacteria: planktonic cells and biofilms. Mater Sci Eng C Mater Biol Appl 47:367–375

    CAS  PubMed  Google Scholar 

  34. Hegazy MA, El-Tabei AS (2013) Synthesis, surface properties, synergism parameter and inhibitive performance of novel cationic gemini surfactant on carbon steel corrosion in 1 M HCl solution. J Surfact Deterg 16:221–232

    CAS  Google Scholar 

  35. Akl ZF, Ali TA (2016) Highly sensitive potentiometric sensors for thorium ions detection using morpholine derivative self-assembled on silver nanoparticles. RSC Adv 6:77854–77862

    CAS  Google Scholar 

  36. Crespo GA, Gugsa D, Macho S, Rius FX (2009) Solid-contact pH-selective electrode using multi-walled carbon nanotubes. Anal Bioanal Chem 395:2371–2376

    CAS  PubMed  Google Scholar 

  37. Serrano N, Castilla O, Ariño C, Diaz-Cruz MS, Díaz-Cruz JM (2019) Commercial screen-printed electrodes based on carbon nanomaterials for a fast and cost-effective voltammetric determination of paracetamol, ibuprofen and caffeine in water samples. Sensors 19:4039

  38. Struthers H, Spingler B, Mindt TL, Schibli R (2008) “Click-to-chelate”: design and incorporation of triazole-containing metal-chelating systems into biomolecules of diagnostic and therapeutic interest. Chem Eur J 14:6173–6183

    CAS  PubMed  Google Scholar 

  39. Umezawa Y, Umezawa K, Sato H (1995) Selectivity coefficients for ion-selective electrodes: recommended methods for reporting KA,Bpot values. Pure Appl Chem 67:507–518

    Google Scholar 

  40. Zhang T, Chai Y, Yuan R, Guo J (2012) Nanostructured multi-walled carbon nanotubes derivate based on carbon paste electrode for potentiometric detection of Ag+ ions. Anal Methods 4:454–459

    CAS  Google Scholar 

  41. El-Nashar RM, Abdel Ghani NT, Hassan SM (2012) Construction and performance characteristics of new ion selective electrodes based on carbon nanotubes for determination of meclofenoxate hydrochloride. Anal Chim Acta 730:99–111

    CAS  PubMed  Google Scholar 

  42. Telting-Diaz M, Bakker E (2001) Effect of lipophilic ion-exchanger leaching on the detection limit of carrier-based ion-selective electrodes. Anal Chem 73:5582–5589

    CAS  PubMed  Google Scholar 

  43. Ganjali MR, Khoshsafar H, Shirzadmehr A, Javanbakht M, Faridbod F (2009) Improvement of carbon paste ion selective electrode response by using room temperature ionic liquids (RTILs) and multi-walled carbon nanotubes (MWCNTs). Int J Electrochem Sci 4:435–443

    CAS  Google Scholar 

  44. Shvedene NV, Avramenko OA, Baulin VE, Tomilova LG, Pletnev IG (2011) Iodide-selective screen-printed electrodes based on low-melting ionic solids and metallated phthalocyanine. Electroanalysis 23:1067–1072

    CAS  Google Scholar 

  45. Wardak C, Lenik J (2013) Application of ionic liquid to the construction of Cu(II) ion-selective electrode with solid contact. Sens Actuators B Chem 189:52–59

  46. Padnya PL, Porfireva AV, Evtugyn GA, Stoikov II (2018) Solid contact potentiometric sensors based on a new class of ionic liquids on thiacalixarene platform. Front Chem 6:594

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gouranourimi A, Ghassemzadeh M, Bahemmat S, Neumüller B, Tonner R (2015) New palladium(II) complexes containing 3-mercapto-1,2,4-triazole ligands: synthesis, characterization, crystal structure, and density functional theory calculations. Monatsh Chem 146:57–67

    CAS  Google Scholar 

  48. Guo J, Chai Y, Yuan R, Song Z, Zou Z (2011) Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: application to lead content determination in environmental samples. Sens Actuators B Chem 155:639–645

    CAS  Google Scholar 

  49. Ali TA, Mohamed GG, Aglan RF, Mourad MA (2018) A Novel screen-printed and carbon paste electrodes for potentiometric determination of uranyl(II) ion in spiked water samples. Russ J Electrochem 54:201–215

    CAS  Google Scholar 

  50. Akl ZF, Ali TA (2017) A novel modified screen-printed electrode with triazole surfactant assembled on silver nanoparticles for potentiometric determination of uranium. J Radioanal Nucl Chem 314:1865–1875

    CAS  Google Scholar 

  51. Buck RP, Lindner E (1994) Recommendations for nomenclature of ion selective electrodes. Pure Appl Chem 66:2725–2736

    Google Scholar 

  52. Ibupoto ZH, Khun K, Willander M (2013) A selective iodide ion sensor electrode based on functionalized ZnO nanotubes. Sensors 13:1984–1997

    CAS  PubMed  Google Scholar 

  53. Bakker E, Buhlmann P, Pretsch E (1997) Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem Rev 97:3083–3132

    CAS  PubMed  Google Scholar 

  54. Bakker E (2010) Generalized selectivity description for polymeric ion-selective electrodes based on the phase boundary potential model. J Electroanal Chem 639:1–7

    CAS  Google Scholar 

  55. Zidan WI, Badr IHA, Akl ZF (2015) Development of potentiometric sensors for the selective determination of UO22+ ions. J Radioanal Nucl Chem 303:469–477

    CAS  Google Scholar 

  56. Ghanbari M, Rounaghi GH, Ashraf N (2017) An uranyl solid state PVC membrane potentiometric sensor based on 4,13-didecyl-1,7,10,16-tetraoxa-4,13- diazacyclooctadecane and its application for environmental samples. Int J Environ Anal Chem 97:189–200

    CAS  Google Scholar 

  57. Ramkumar J, Maiti B (2003) Nafion-coated uranyl selective electrode based on calixarene and tri-n-octyl phosphine oxide. Sens Actuators B Chem 96:527–532

    CAS  Google Scholar 

  58. Abu-Dalo MA, Al-Rawashdeh NAF, Al-Mheidat IR, Nassory NS (2016) Preparation and evaluation of new uranyl imprinted polymer electrode sensor for uranyl ion based on uranyl–carboxybezotriazole complex in pvc matrix membrane. Sens Actuators B Chem 227:336–345

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer A. Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, T.A., Akl, Z.F. Ionic liquid-multi-walled carbon nanotubes modified screen-printed electrodes for sensitive electrochemical sensing of uranium. J Radioanal Nucl Chem 328, 267–276 (2021). https://doi.org/10.1007/s10967-020-07573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07573-z

Keywords

Navigation