Skip to main content
Log in

Exposure to radon in buildings in the municipality of Lubango, Angola, during winter months

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The evaluation of indoor radon exposure in dwellings is done for the first time in Lubango. The corresponding annual effective dose to which the population is exposed during the wintertime was calculated. A total of 59 single-family houses and 16 public buildings were selected. The results obtained show that in 100% of the houses, the radon concentrations are below 300 Bq m−3. The values of the indoor annual effective dose vary from (2.0 ± 0.1) to (7.0 ± 0.2) mSv y−1 below the recommended maximum reference level of 10 mSv y−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zeeb H, Shannoun F (2009) Who Handbook on Indoor radon, a public health perspective. WHO Press, Geneva

    Google Scholar 

  2. Louro A et al (2013) Human exposure to indoor radon: a survey in the region of Guarda, Portugal. Radiat Prot Dosimetry 154:237–244

    Article  CAS  Google Scholar 

  3. Laughlin J, Bochicchio F (2007) In focus: radon and lung cancer. In: Conference: EnVIE conference on indoor air quality and health for EU policy. Helsinki (Finland).199-210

  4. Tirmarche M, Harrison JD, Laurier D, Paquet F, Blanchardon E, Marsh JW (2010) Lung cancer risk from radon and progeny and statement on radon. Ann ICRP 40:1–64

    CAS  PubMed  Google Scholar 

  5. Axelsson G, Andersson EM, Barregard L (2015) Lung cancer risk from radon exposure in dwellings in Sweden: how many cases can be prevented if radon levels are lowered? Cancer Causes Control 26:541–547. https://doi.org/10.1007/s10552-015-0531-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tschiersch J, Haninger T (2005) Comments on ‘adjusting lung cancer risks for temporal and spatial variations in radon concentrations in dwellings in Gansu Province, China’ by Lubin et al. Radiat Res 163:571–579

    Article  Google Scholar 

  7. Salupeto-Dembo J, Szabó-Krausz Z, Völgyesi P, Kis Z, Szabό C (2020) External radiation exposure of the Angolan population living in adobe houses. J Radioanal Nucl Chem 323:353–364

    Article  CAS  Google Scholar 

  8. Salupeto-Dembo J, Szabó-Krausz Z, Völgyesi P, Szabό C (2020) Radon and thoron radiation exposure of the Angolan population living in adobe houses. J Radioanal Nucl Chem 325:271–282

    Article  CAS  Google Scholar 

  9. Kessongo J, Bahu Y, Inácio M, Peralta L, Soares S (2020) Radon concentration potential in Bibala municipality water: consequences for public consumption. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2020.108951

    Article  Google Scholar 

  10. Unscear, Sources and effects of ionizing radiation United Nations Scientific Committee on the Effects of Atomic Radiation. http://large.stanford.edu/courses/2017/ph241/gutwald1/docs/unscear-2-2000.pdf. Accessed 05 April 2020

  11. Cottinghan WN, Greenwood DA (2004) An introduction to nuclear physics. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  12. Huntley BJ, Russo Vladimir, Lages Fernanda, Ferrand N (2019) Angolan biodiversity: science & conservation: a modern synthesis. Springer Open, Cham, Switzerland

    Google Scholar 

  13. Wikipedia.org (2020) Cidade do Lubango. https://pt.wikipedia.org/wiki/Lubango. Acessed 4 March 2020

  14. CESO (2020) Estudo Sobre as rochas Ornamentais em Angola. https://www.ceso.pt/pdfs/RochasOrnamentaisAngola.pdf. Accessed 8 March 2020

  15. Pereira E, Tassinari CCG, Rodrigues JF, Van-Dúnem MV (2011) New data on the deposition age of the volcano-sedimentary chela group and its eburnean basement: implications to post-Eburnean crustal evolution of the SW of Angola. Comun Geol 98:29–40

    Google Scholar 

  16. DA Silva AF (2020) A Geologia da República de Angola desde o Paleoarcaico ao Paleozóico Inferior. Repositório do LNEG/GEOCIÊNCIAS/Geologia e Cartogr. Geológica. http://repositorio.lneg.pt/handle/10400.9/2619. Accessed 10 April 2020

  17. McCourt S, Armstrong RA, Jelsma H, Mapeo RBM (2013) New U-Pb SHRIMP ages from the Lubango region, SW Angola: insights into the Palaeoproterozoic evolution of the Angolan Shield, southern Congo Craton, Africa. J Geol Soc London 170:353–363

    Article  CAS  Google Scholar 

  18. Francisco Sousa do Vale MCS (1971) Carta Geológica: folha no 336 - Sá da Bandeira1:100.000. http://memoriaafrica.ua.pt/Catalog/ShowRecord.aspx?MFN=12080. Accessed 07 June 2020

  19. ESRI (2020) A quick tour of ArcMap. https://desktop.arcgis.com/en/arcmap/10.3/main/get-started/a-quick-tour-of-arcmap.htm. Accessed 03 April 2020

  20. ESRI (2020) ArcGIS Desktop,https://desktop.arcgis.com/en/arcmap/. Accessed 06 April 2020

  21. Mapcruzin (2020) Download Free Angola Country, city, region, boundaries GIS Shapefile Map Layers. https://mapcruzin.com/free-angola-country-city-place-gis-shapefiles.htm. Accessed 02 April 2020

  22. Vasilescu A (2013) CR-39 sampling of indoor radon in Southern Romania. Rom J Phys 58:311–319

    Google Scholar 

  23. Koc P, Ekinci N, Cinan E, Kavaz E (2018) Determination of radon concentration by using CR-39 plastic track detectors in dwellings of Bingöl and Mus Provinces of Turkey. Asian J Chem 30:2424–2430

    Article  Google Scholar 

  24. Zeng Z, Cheng JG, Li J (2018) Measurements of radon concentrations using CR-39 detectors in China JinPing Underground Laboratory (2015–2016). https://arxiv.org/ftp/arxiv/papers/1806/1806.06567.pdf. Accessed 18 March 2020

  25. Lee J (2005) Construction of an environmental radon monitoring system using Cr-39 nuclear track detectors. Nucl. Eng. Technol. 37:395–400

    Google Scholar 

  26. Shakir AA, Kadhim IH, Almayyalin AOM, Majeed FA (2016) Measurement of radon concentration in some of cosmetics by using Nuclear Track Detector (CR-39). Int J PharmTech Res 9:231–235

    CAS  Google Scholar 

  27. Sani JM, Alias N, Ahmad N, Saat A (2018) The assessment of indoor Radon-222 concentration and emanation rate at Gua Penyu, Pahang. Malays J Anal Sci 22:483–490

    Google Scholar 

  28. Hasan F (1996) Indoor radon concentration measurements at Hebron University campus: a case study Fakhri L Hasan. J Najah Edu 4:92–107

    Google Scholar 

  29. Iida T, Nurishi R, Okamoto K (1997) Passive integrating 222Rn and 220Rn CUP monitors with CR-39 detectors. Environ Int. https://doi.org/10.1016/S0160-4120(96)00166-3

    Article  Google Scholar 

  30. Askari M, Hassanvand MS, Naddafi K, Zarei A, Yousefi M, Alimohammadi M (2019) Assessment of indoor radon concentration in residential homes and public places in south of Tehran, Iran. Environ Earth Sci 78:317

    Article  Google Scholar 

  31. Radosys (2020) RADOSYS User Manual. https://manualzz.com/doc/7321648/1-introduction-to-the-radosys-system. Accessed 20 January 2020

  32. ISO (2020) International Standard 11665-4. https://www.iso.org/standard/76009.html. Acsessed 30 April 2020

  33. Kennedy M (2013) Introducing Geographic Information Systems with ArcGIS. Wiley, New Jersey, USA

    Google Scholar 

  34. Nas B, Berktay A (2010) Groundwater quality mapping in urban groundwater using GIS. Environ Monit Assess 160:215–227

    Article  CAS  Google Scholar 

  35. Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS Geostatistical Analyst. GIS by ESRI, New York, USA

    Google Scholar 

  36. Shepard D (1968) Two- dimensional interpolation function for irregularly- spaced data. Proc 23rd Nat Conf. https://doi.org/10.1145/800186.810616

    Article  Google Scholar 

  37. Shashi Shekhar HX (2008) Encyclopedia of GIS. Spring, New York, USA

    Book  Google Scholar 

  38. UNSCEAR (2020) 2000-Sources and effects of ionizing radiation: volume I, https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf. Accessed 11 April 2020

  39. Stojanovska Z, Januseski J, Bossew P, Zunic ZS, Tollefsen T, Ristova M (2011) Seasonal indoor radon concentration in FYR of Macedonia. Radiat Meas 46:602–610

    Article  CAS  Google Scholar 

  40. Munyaradzi Z, Anna KN, Makondelele TV (2018) “Excess lifetime cancer risk due to natural radioactivity in soils: case of Karibib town in Namibia”, African Rev. Phys. 13:71–78

    Google Scholar 

  41. UNSCEAR (2020) Sources, Effects and Risks of Ionizing Radiation. https://www.unscear.org/docs/publications/1988/UNSCEAR_1988_Report.pdf. Accessed 10 March 2020

  42. Brenner DJ (1994) Protection against radon-222 at home and at work. ICRP publication 65. Int J Radiat Biol 66:413

    Article  Google Scholar 

  43. ESRI (2020) Basemaps and Imagery, Digital Map Solutions. https://www.esri.com/en-us/arcgis/products/location-services/services/basemaps. Accessed 11 April 2020

Download references

Acknowledgements

We acknowledge the support of this work by the government of the Republic of Angola through PhD grants n◦ 38/2016 and n◦ 441/2016 for J. Kessongo and Y. Bahu, respectively. We are grateful to Ashley Rose Peralta for the review of the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Soares.

Ethics declarations

Conflict of interest

We state that all measurements were done with the appropriate information and permissions of local authorities, in the case of public buildings and house owners in the case of single-family houses. We further declare that we have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahu, Y., Kessongo, J., Peralta, L. et al. Exposure to radon in buildings in the municipality of Lubango, Angola, during winter months. J Radioanal Nucl Chem 327, 635–642 (2021). https://doi.org/10.1007/s10967-020-07570-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07570-2

Keywords

Navigation