Skip to main content
Log in

Visible-light induced photocatalytic removal of U(VI) from aqueous solution by MoS2/g-C3N4 nanocomposites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, MoS2/g-C3N4 nanocomposites was prepared via an ultrasonication and calcination method and used for uranium ions removal from uranium containing solution. The optimum MoS2/g-C3N4 composites photocatalyst with the molar content of 3% MoS2 had the highest photocatalytic performance (93% reduction efficiency within 60 min irradiation time), which was approximately five times faster than that of pure g-C3N4. MoS2 plays pivotal roles in light adsorption, transfer and charge separation in photoreduction of U(VI) process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dhami PS, Chitnis RR, Gopalakrishnan V, Wattal PK, Ramanujam A, Bauri AK (2001) Studies on the partitioning of actinides from high level waste using a mixture of HDEHP and CMPO as extractant. Sep Sci Technol 36(2):325–335

    Article  CAS  Google Scholar 

  2. Zotina TA, Trofimova EA, Dementiev DV, Bolsunovsky AY (2011) Accumulation of 241Am by crucian carp from food and water. Dokl Biol Sci 439(1):248–252

    Article  PubMed  CAS  Google Scholar 

  3. Xu L, Zheng T, Yang ST, Zhang LJ, Wang JQ, Liu W, Chen LH, Juan DW, Chai ZF, Wang S (2016) Uptake mechanisms of Eu(III) on hydroxyapatite: a potential permeable reactive barrier backfill material for trapping trivalent minor actinides. Environ Sci Technol 50(7):3852–3859

    Article  PubMed  CAS  Google Scholar 

  4. Li ZJ, Huang ZW, Guo WL, Wang L, Zheng LR, Cha ZF, Shi WQ (2017) Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ Sci Technol 51(10):5666–5674

    Article  PubMed  CAS  Google Scholar 

  5. Clark DL, Hobart DE, Neu MP (1995) Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem Rev 95(1):25–48

    Article  CAS  Google Scholar 

  6. Choppin GR (2007) Actinide speciation in the environment. J Radioanal Nucl Chem 273(3):695–703

    Article  CAS  Google Scholar 

  7. Lu C, Zhang P, Jiang S, Wu X, Song S, Zhu M, Lou Z, Li Z, Liu F, Liu Y (2017) Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl Catal B Environ 200:378–385

    Article  CAS  Google Scholar 

  8. Zhang WZ, Li L, Gao YH, Zhang D (2020) Graphitic carbon nitride-based materials for photocatalytic reduction of U(VI). New J Chem. https://doi.org/10.1039/d0nj04519e

    Article  Google Scholar 

  9. Caroline JE, Graeme PN, Douglas A, Mark JK (2004) Photochemical removal of uranium from a phosphate waste solution. Green Chem 6:196–197

    Article  Google Scholar 

  10. Li ZJ, Huang ZW, Guo WL, Wang L, Zheng LR, Chai ZF, Shi WQ (2017) Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ Sci Technol 51(10):5666–5674

    Article  PubMed  CAS  Google Scholar 

  11. Li P, Wang JJ, Wang Y, Liang JJ, He BH, Wang XK (2019) Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem Eng J 365(1):231–241

    Article  CAS  Google Scholar 

  12. Wang S, Yan Q, Dong P, Zhao C, Wang Y, Liu F, Li L (2018) Morphology and band structure regulation of graphitic carbon nitride microspheres by solvothermal temperature to boost photocatalytic activity. Appl Phys A 124(6):416. https://doi.org/10.1007/s00339-018-1834-8

    Article  CAS  Google Scholar 

  13. Chen X, Li N, Kong Z, Ong WJ, Zhao X (2017) Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Mater Horizons 5(1):9–27

    Article  Google Scholar 

  14. Zhang JS, Chen XF, Kazuhiro T, Maeda K, Domen K (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49(2):441–444

    Article  CAS  Google Scholar 

  15. Ramakrishna D, Rajkumar B, Reddy GB, Veerabhadram G (2019) Construction of in situ self-assembled FeWO4/g-C3N4 nanosheet heterostructured z-scheme photocatalysts for enhanced photocatalytic degradation of rhodamine B and tetracycline. Nanoscale Adv 1(1):322–333

    Article  Google Scholar 

  16. Song XC, Li WT, Huang WZ, Zhou H (2015) A novel p–n heterojunction BiOBr/ZnWO4: preparation and its improved visible light photocatalytic activity. Mater Chem Phys 160:251–256

    Article  CAS  Google Scholar 

  17. Chu S, Wang Y, Guo Y, Feng J, Wang C, Luo W, Fan X, Zou Z (2013) Band structure engineering of carbon nitride: In search of a polymer photocatalyst with high photooxidation property. ACS Catal 3(5):912–919

    Article  CAS  Google Scholar 

  18. Jiang XH, Xing QJ, Luo XB, Li F, Zou JP, Liu SS, Li X, Wang XK (2018) Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic (III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl Catal B Environ 288(15):29–38

    Article  Google Scholar 

  19. Low J, Cao S, Yu J, Wageh S (2014) Two-dimensional layered composite photocatalysts. Chem Commun 50(74):10768–10777

    Article  CAS  Google Scholar 

  20. Hou Y, Li J, Wen Z, Cui S, Yuan C, Chen J (2014) N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. Nano Energy 8:157–164

    Article  CAS  Google Scholar 

  21. Hu SZ, Jin R, Lu G, Liu D, Gui JZ (2014) The properties and photocatalytic performance comparison of Fe3+-doped g-C3N4 and Fe2O3/g-C3N4 composite catalysts. RSC Adv 4(47):24863

    Article  CAS  Google Scholar 

  22. Wang XX, Chen L, Wang L, Fan QH, Pan DQ, Li JX, Chi FT, Xie Y, Yu SJ, Xiao CL, Luo F (2019) Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 62(8):933–967

    Article  CAS  Google Scholar 

  23. Li CX, Li XY, Bo L, Wang XY, Che G-b, Xue L (2018) A novel Ag3PO4/Ag/Ag2Mo2O7 nanowire photocatalyst: Ternary nanocomposite for enhanced photocatalytic activity. Chin J Chem Phys 31(1):92–98

    Article  CAS  Google Scholar 

  24. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113(5):3766–3798

    Article  PubMed  CAS  Google Scholar 

  25. Fu J, Yu J, Jiang C, Cheng B (2017) g-C3N4-based heterostructured photocatalysts. Adv Energy Mater 8(3):1701503–1701534

    Article  Google Scholar 

  26. Sinks LE, Rybtchinski B, Iimura M, Jones BA, Goshe AJ, Zuo X, Tiede DM, Li X, Wasielewski MR (2015) Self-assembly of photofunctional cylindrical nanostructures based on perylene-3,4:9,10-bis(dicarboximide). Chem Mater 17(25):6295–6303

    Article  Google Scholar 

  27. Sabarinathan M, Harish S, Archana J, Navaneethan M, Ikeda H, Hayakawa Y (2017) Highly efficient visible-light photocatalytic activity of MoS2–TiO2 mixtures hybrid photocatalyst and functional properties. RSC Adv 7(40):24754–24763

    Article  CAS  Google Scholar 

  28. Fu X, Wu D, Zhou X, Shi H, Hu Z (2007) Solvothermal synthesis of molybdenum disulfide hollow spheres modified by cyanex 301 in water-ethanol medium. J Nanopart Res 9(4):675–681

    Article  CAS  Google Scholar 

  29. Zhou MJ, Hou ZH, Zhang L, Liu Y, Gao QZ, Chen XB (2017) n/n junctioned g-C3N4 for enhanced photocatalytic H-2 generation. Sustain Energ Fuels 1(2):317–323

    Article  CAS  Google Scholar 

  30. Di J, Xia J, Ji M, Wang B, Yin S, Zhang Q, Chen Z, Li H (2016) Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight. Appl Catal B Environ 183:254–262

    Article  CAS  Google Scholar 

  31. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11(11):963–969

    Article  PubMed  CAS  Google Scholar 

  32. Gao Q, Liu N, Wang S, Tang Y (2014) Metal non-oxide nanostructures developed from organic-inorganic hybrids and their catalytic application. Nanoscale 6(23):14106–14120

    Article  PubMed  CAS  Google Scholar 

  33. Eliet V, Bidoglio G (1998) Kinetics of the laser-induced photoreduction of U(VI) in aqueous suspensions of TiO2 particles. Environ Sci Technology 32(20):3155–3161

    Article  CAS  Google Scholar 

  34. Liu SJ, Li S, Hanxue ZHX, Wu LP, Sun L (2016) Removal of uranium(VI) from aqueous solution using graphene oxide and its amine-functionalized composite. J Radioanal Nucl Chem 309(2):607–614

    CAS  Google Scholar 

  35. Luo BC, Yuan LY, Luo CZF, Shi WQ, Tang Q (2016) U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 307(1):269–276

    Article  CAS  Google Scholar 

  36. Xu J, Li Y, Jing C, Zhang H, Ning Y (2014) Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron. J Radioanal Nucl Chem 299(1):329–336

    Article  CAS  Google Scholar 

  37. Wang JJ, Wang Y, Wang W, Peng T, Liang JJ, Li P, Pan DQ, Fan QH, Wu WS (2020) Visible light driven Ti3+ self-doped TiO2 for adsorption-photocatalysis of aqueous U(VI). Environ Pollut 262:114373

    Article  PubMed  CAS  Google Scholar 

  38. Simeonidis K, Gkinis T, Tresintsi S, Martinez-Boubeta C, Vourlias G (2011) Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chem Eng J 168(3):1008–1015

    Article  CAS  Google Scholar 

  39. Joseph KLV, Lim J, Anthonysamy A, Kim HI, Choi W, Kim JK (2015) Squaraine-sensitized composite of a reduced graphene oxide/TiO2 photocatalyst: pi–pi stacking as a new method of dye anchoring. J Mater Chem A 3(1):232–239

    Article  CAS  Google Scholar 

  40. Guo C, Zhang RJ, Wang BS (2016) Visible-light-driven Fe2O3 nanoparticles/TiO2 array photoelectrode and its photoelectrochemical property. Res Chem Intermed 42(12):7935–7946

    Article  CAS  Google Scholar 

  41. Hou Y, Zhang B, Wen Z, Cui S, Guo X, He Z, Chen J (2014) A 3D hybrid of layered MoS2/nitrogen-doped graphene nanosheet aerogels: an effective catalyst for hydrogen evolution in microbial electrolysis cells. J Mater Chem A 2(34):13795–13800

    Article  CAS  Google Scholar 

  42. Lu XJ, Jin YL, Zhang XY, Xu GQ, Wang DM, Lv J, Zheng ZX, Wu YC (2016) Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance. Dalton Trans 45(39):15406–15414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21866004, 21866003), the Defense Industrial Technology Development Program (JCKY2019401C004), the Jiangxi Provincial Department of Science and Technology (Grant No. 2018ACB21007) and the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province (Grant No. 20182BCB22011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhai Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhou, R., Dong, Z. et al. Visible-light induced photocatalytic removal of U(VI) from aqueous solution by MoS2/g-C3N4 nanocomposites. J Radioanal Nucl Chem 328, 9–17 (2021). https://doi.org/10.1007/s10967-020-07567-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07567-x

Keywords

Navigation